scylla/transport/
cluster.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/// Cluster manages up to date information and connections to database nodes
use crate::frame::response::event::{Event, StatusChangeEvent};
use crate::prepared_statement::TokenCalculationError;
use crate::routing::Token;
use crate::transport::host_filter::HostFilter;
use crate::transport::{
    connection::{Connection, VerifiedKeyspaceName},
    connection_pool::PoolConfig,
    errors::QueryError,
    node::Node,
    partitioner::PartitionerName,
    topology::{Keyspace, Metadata, MetadataReader},
};

use arc_swap::ArcSwap;
use futures::future::join_all;
use futures::{future::RemoteHandle, FutureExt};
use itertools::Itertools;
use scylla_cql::errors::{BadQuery, NewSessionError};
use scylla_cql::types::serialize::row::SerializedValues;
use std::collections::HashMap;
use std::net::SocketAddr;
use std::sync::Arc;
use std::time::Duration;
use tracing::instrument::WithSubscriber;
use tracing::{debug, warn};
use uuid::Uuid;

use super::node::{KnownNode, NodeAddr};

use super::locator::ReplicaLocator;
use super::partitioner::calculate_token_for_partition_key;
use super::topology::Strategy;

/// Cluster manages up to date information and connections to database nodes.
/// All data can be accessed by cloning Arc<ClusterData> in the `data` field
pub(crate) struct Cluster {
    // `ArcSwap<ClusterData>` is wrapped in `Arc` to support sharing cluster data
    // between `Cluster` and `ClusterWorker`
    data: Arc<ArcSwap<ClusterData>>,

    refresh_channel: tokio::sync::mpsc::Sender<RefreshRequest>,
    use_keyspace_channel: tokio::sync::mpsc::Sender<UseKeyspaceRequest>,

    _worker_handle: RemoteHandle<()>,
}

/// Enables printing [Cluster] struct in a neat way, by skipping the rather useless
/// print of channels state and printing [ClusterData] neatly.
pub(crate) struct ClusterNeatDebug<'a>(pub(crate) &'a Cluster);
impl<'a> std::fmt::Debug for ClusterNeatDebug<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let cluster = self.0;
        f.debug_struct("Cluster")
            .field("data", &ClusterDataNeatDebug(&cluster.data.load()))
            .finish_non_exhaustive()
    }
}

#[derive(Clone, Debug)]
pub struct Datacenter {
    pub nodes: Vec<Arc<Node>>,
    pub rack_count: usize,
}

#[derive(Clone)]
pub struct ClusterData {
    pub(crate) known_peers: HashMap<Uuid, Arc<Node>>, // Invariant: nonempty after Cluster::new()
    pub(crate) keyspaces: HashMap<String, Keyspace>,
    pub(crate) locator: ReplicaLocator,
}

/// Enables printing [ClusterData] struct in a neat way, skipping the clutter involved by
/// [ClusterData::ring] being large and [Self::keyspaces] debug print being very verbose by default.
pub(crate) struct ClusterDataNeatDebug<'a>(pub(crate) &'a Arc<ClusterData>);
impl<'a> std::fmt::Debug for ClusterDataNeatDebug<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let cluster_data = &self.0;

        f.debug_struct("ClusterData")
            .field("known_peers", &cluster_data.known_peers)
            .field("ring", {
                struct RingSizePrinter(usize);
                impl std::fmt::Debug for RingSizePrinter {
                    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                        write!(f, "<size={}>", self.0)
                    }
                }
                &RingSizePrinter(cluster_data.locator.ring().len())
            })
            .field("keyspaces", &cluster_data.keyspaces.keys())
            .finish_non_exhaustive()
    }
}

// Works in the background to keep the cluster updated
struct ClusterWorker {
    // Cluster data to keep updated:
    cluster_data: Arc<ArcSwap<ClusterData>>,

    // Cluster connections
    metadata_reader: MetadataReader,
    pool_config: PoolConfig,

    // To listen for refresh requests
    refresh_channel: tokio::sync::mpsc::Receiver<RefreshRequest>,

    // Channel used to receive use keyspace requests
    use_keyspace_channel: tokio::sync::mpsc::Receiver<UseKeyspaceRequest>,

    // Channel used to receive server events
    server_events_channel: tokio::sync::mpsc::Receiver<Event>,

    // Channel used to receive signals that control connection is broken
    control_connection_repair_channel: tokio::sync::broadcast::Receiver<()>,

    // Keyspace send in "USE <keyspace name>" when opening each connection
    used_keyspace: Option<VerifiedKeyspaceName>,

    // The host filter determines towards which nodes we should open
    // connections
    host_filter: Option<Arc<dyn HostFilter>>,

    // This value determines how frequently the cluster
    // worker will refresh the cluster metadata
    cluster_metadata_refresh_interval: Duration,
}

#[derive(Debug)]
struct RefreshRequest {
    response_chan: tokio::sync::oneshot::Sender<Result<(), QueryError>>,
}

#[derive(Debug)]
struct UseKeyspaceRequest {
    keyspace_name: VerifiedKeyspaceName,
    response_chan: tokio::sync::oneshot::Sender<Result<(), QueryError>>,
}

impl Cluster {
    pub(crate) async fn new(
        known_nodes: Vec<KnownNode>,
        pool_config: PoolConfig,
        keyspaces_to_fetch: Vec<String>,
        fetch_schema_metadata: bool,
        host_filter: Option<Arc<dyn HostFilter>>,
        cluster_metadata_refresh_interval: Duration,
    ) -> Result<Cluster, NewSessionError> {
        let (refresh_sender, refresh_receiver) = tokio::sync::mpsc::channel(32);
        let (use_keyspace_sender, use_keyspace_receiver) = tokio::sync::mpsc::channel(32);
        let (server_events_sender, server_events_receiver) = tokio::sync::mpsc::channel(32);
        let (control_connection_repair_sender, control_connection_repair_receiver) =
            tokio::sync::broadcast::channel(32);

        let mut metadata_reader = MetadataReader::new(
            known_nodes,
            control_connection_repair_sender,
            pool_config.connection_config.clone(),
            pool_config.keepalive_interval,
            server_events_sender,
            keyspaces_to_fetch,
            fetch_schema_metadata,
            &host_filter,
        )
        .await?;

        let metadata = metadata_reader.read_metadata(true).await?;
        let cluster_data = ClusterData::new(
            metadata,
            &pool_config,
            &HashMap::new(),
            &None,
            host_filter.as_deref(),
        )
        .await;
        cluster_data.wait_until_all_pools_are_initialized().await;
        let cluster_data: Arc<ArcSwap<ClusterData>> =
            Arc::new(ArcSwap::from(Arc::new(cluster_data)));

        let worker = ClusterWorker {
            cluster_data: cluster_data.clone(),

            metadata_reader,
            pool_config,

            refresh_channel: refresh_receiver,
            server_events_channel: server_events_receiver,
            control_connection_repair_channel: control_connection_repair_receiver,

            use_keyspace_channel: use_keyspace_receiver,
            used_keyspace: None,

            host_filter,
            cluster_metadata_refresh_interval,
        };

        let (fut, worker_handle) = worker.work().remote_handle();
        tokio::spawn(fut.with_current_subscriber());

        let result = Cluster {
            data: cluster_data,
            refresh_channel: refresh_sender,
            use_keyspace_channel: use_keyspace_sender,
            _worker_handle: worker_handle,
        };

        Ok(result)
    }

    pub(crate) fn get_data(&self) -> Arc<ClusterData> {
        self.data.load_full()
    }

    pub(crate) async fn refresh_metadata(&self) -> Result<(), QueryError> {
        let (response_sender, response_receiver) = tokio::sync::oneshot::channel();

        self.refresh_channel
            .send(RefreshRequest {
                response_chan: response_sender,
            })
            .await
            .expect("Bug in Cluster::refresh_metadata sending");
        // Other end of this channel is in ClusterWorker, can't be dropped while we have &self to Cluster with _worker_handle

        response_receiver
            .await
            .expect("Bug in Cluster::refresh_metadata receiving")
        // ClusterWorker always responds
    }

    pub(crate) async fn use_keyspace(
        &self,
        keyspace_name: VerifiedKeyspaceName,
    ) -> Result<(), QueryError> {
        let (response_sender, response_receiver) = tokio::sync::oneshot::channel();

        self.use_keyspace_channel
            .send(UseKeyspaceRequest {
                keyspace_name,
                response_chan: response_sender,
            })
            .await
            .expect("Bug in Cluster::use_keyspace sending");
        // Other end of this channel is in ClusterWorker, can't be dropped while we have &self to Cluster with _worker_handle

        response_receiver.await.unwrap() // ClusterWorker always responds
    }
}

impl ClusterData {
    // Updates information about rack count in each datacenter
    fn update_rack_count(datacenters: &mut HashMap<String, Datacenter>) {
        for datacenter in datacenters.values_mut() {
            datacenter.rack_count = datacenter
                .nodes
                .iter()
                .filter_map(|node| node.rack.as_ref())
                .unique()
                .count();
        }
    }

    pub(crate) async fn wait_until_all_pools_are_initialized(&self) {
        for node in self.locator.unique_nodes_in_global_ring().iter() {
            node.wait_until_pool_initialized().await;
        }
    }

    /// Creates new ClusterData using information about topology held in `metadata`.
    /// Uses provided `known_peers` hashmap to recycle nodes if possible.
    pub(crate) async fn new(
        metadata: Metadata,
        pool_config: &PoolConfig,
        known_peers: &HashMap<Uuid, Arc<Node>>,
        used_keyspace: &Option<VerifiedKeyspaceName>,
        host_filter: Option<&dyn HostFilter>,
    ) -> Self {
        // Create new updated known_peers and ring
        let mut new_known_peers: HashMap<Uuid, Arc<Node>> =
            HashMap::with_capacity(metadata.peers.len());
        let mut ring: Vec<(Token, Arc<Node>)> = Vec::new();
        let mut datacenters: HashMap<String, Datacenter> = HashMap::new();
        let mut all_nodes: Vec<Arc<Node>> = Vec::with_capacity(metadata.peers.len());

        for peer in metadata.peers {
            // Take existing Arc<Node> if possible, otherwise create new one
            // Changing rack/datacenter but not ip address seems improbable
            // so we can just create new node and connections then
            let peer_host_id = peer.host_id;
            let peer_address = peer.address;
            let peer_tokens;

            let node: Arc<Node> = match known_peers.get(&peer_host_id) {
                Some(node) if node.datacenter == peer.datacenter && node.rack == peer.rack => {
                    let (peer_endpoint, tokens) = peer.into_peer_endpoint_and_tokens();
                    peer_tokens = tokens;
                    if node.address == peer_address {
                        node.clone()
                    } else {
                        // If IP changes, the Node struct is recreated, but the underlying pool is preserved and notified about the IP change.
                        Arc::new(Node::inherit_with_ip_changed(node, peer_endpoint))
                    }
                }
                _ => {
                    let is_enabled = host_filter.map_or(true, |f| f.accept(&peer));
                    let (peer_endpoint, tokens) = peer.into_peer_endpoint_and_tokens();
                    peer_tokens = tokens;
                    Arc::new(Node::new(
                        peer_endpoint,
                        pool_config.clone(),
                        used_keyspace.clone(),
                        is_enabled,
                    ))
                }
            };

            new_known_peers.insert(peer_host_id, node.clone());

            if let Some(dc) = &node.datacenter {
                match datacenters.get_mut(dc) {
                    Some(v) => v.nodes.push(node.clone()),
                    None => {
                        let v = Datacenter {
                            nodes: vec![node.clone()],
                            rack_count: 0,
                        };
                        datacenters.insert(dc.clone(), v);
                    }
                }
            }

            for token in peer_tokens {
                ring.push((token, node.clone()));
            }

            all_nodes.push(node);
        }

        Self::update_rack_count(&mut datacenters);

        let keyspaces = metadata.keyspaces;
        let (locator, keyspaces) = tokio::task::spawn_blocking(move || {
            let keyspace_strategies = keyspaces.values().map(|ks| &ks.strategy);
            let locator = ReplicaLocator::new(ring.into_iter(), keyspace_strategies);
            (locator, keyspaces)
        })
        .await
        .unwrap();

        ClusterData {
            known_peers: new_known_peers,
            keyspaces,
            locator,
        }
    }

    /// Access keyspaces details collected by the driver
    /// Driver collects various schema details like tables, partitioners, columns, types.
    /// They can be read using this method
    pub fn get_keyspace_info(&self) -> &HashMap<String, Keyspace> {
        &self.keyspaces
    }

    /// Access datacenter details collected by the driver
    /// Returned `HashMap` is indexed by names of datacenters
    pub fn get_datacenters_info(&self) -> HashMap<String, Datacenter> {
        self.locator
            .datacenter_names()
            .iter()
            .map(|dc_name| {
                let nodes = self
                    .locator
                    .unique_nodes_in_datacenter_ring(dc_name)
                    .unwrap()
                    .to_vec();
                let rack_count = nodes.iter().map(|node| node.rack.as_ref()).unique().count();

                (dc_name.clone(), Datacenter { nodes, rack_count })
            })
            .collect()
    }

    /// Access details about nodes known to the driver
    pub fn get_nodes_info(&self) -> &[Arc<Node>] {
        self.locator.unique_nodes_in_global_ring()
    }

    /// Compute token of a table partition key
    pub fn compute_token(
        &self,
        keyspace: &str,
        table: &str,
        partition_key: &SerializedValues,
    ) -> Result<Token, BadQuery> {
        let partitioner = self
            .keyspaces
            .get(keyspace)
            .and_then(|k| k.tables.get(table))
            .and_then(|t| t.partitioner.as_deref())
            .and_then(PartitionerName::from_str)
            .unwrap_or_default();

        calculate_token_for_partition_key(partition_key, &partitioner).map_err(|err| match err {
            TokenCalculationError::ValueTooLong(values_len) => {
                BadQuery::ValuesTooLongForKey(values_len, u16::MAX.into())
            }
        })
    }

    /// Access to replicas owning a given token
    pub fn get_token_endpoints(&self, keyspace: &str, token: Token) -> Vec<Arc<Node>> {
        self.get_token_endpoints_iter(keyspace, token)
            .cloned()
            .collect()
    }

    pub(crate) fn get_token_endpoints_iter(
        &self,
        keyspace: &str,
        token: Token,
    ) -> impl Iterator<Item = &Arc<Node>> {
        let keyspace = self.keyspaces.get(keyspace);
        let strategy = keyspace
            .map(|k| &k.strategy)
            .unwrap_or(&Strategy::LocalStrategy);
        let replica_set = self
            .replica_locator()
            .replicas_for_token(token, strategy, None);

        replica_set.into_iter()
    }

    /// Access to replicas owning a given partition key (similar to `nodetool getendpoints`)
    pub fn get_endpoints(
        &self,
        keyspace: &str,
        table: &str,
        partition_key: &SerializedValues,
    ) -> Result<Vec<Arc<Node>>, BadQuery> {
        Ok(self.get_token_endpoints(
            keyspace,
            self.compute_token(keyspace, table, partition_key)?,
        ))
    }

    /// Access replica location info
    pub fn replica_locator(&self) -> &ReplicaLocator {
        &self.locator
    }

    /// Returns nonempty iterator of working connections to all shards.
    pub(crate) fn iter_working_connections(
        &self,
    ) -> Result<impl Iterator<Item = Arc<Connection>> + '_, QueryError> {
        // The returned iterator is nonempty by nonemptiness invariant of `self.known_peers`.
        assert!(!self.known_peers.is_empty());
        let mut peers_iter = self.known_peers.values();

        // First we try to find the first working pool of connections.
        // If none is found, return error.
        let first_working_pool = peers_iter
            .by_ref()
            .map(|node| node.get_working_connections())
            .find_or_first(Result::is_ok)
            .expect("impossible: known_peers was asserted to be nonempty")?;

        let remaining_pools_iter = peers_iter
            .map(|node| node.get_working_connections())
            .flatten_ok()
            .flatten();

        Ok(first_working_pool.into_iter().chain(remaining_pools_iter))
        // By an invariant `self.known_peers` is nonempty, so the returned iterator
        // is nonempty, too.
    }
}

impl ClusterWorker {
    pub(crate) async fn work(mut self) {
        use tokio::time::Instant;

        let control_connection_repair_duration = Duration::from_secs(1); // Attempt control connection repair every second
        let mut last_refresh_time = Instant::now();
        let mut control_connection_works = true;

        loop {
            let mut cur_request: Option<RefreshRequest> = None;

            // Wait until it's time for the next refresh
            let sleep_until: Instant = last_refresh_time
                .checked_add(if control_connection_works {
                    self.cluster_metadata_refresh_interval
                } else {
                    control_connection_repair_duration
                })
                .unwrap_or_else(Instant::now);

            let sleep_future = tokio::time::sleep_until(sleep_until);
            tokio::pin!(sleep_future);

            tokio::select! {
                _ = sleep_future => {},
                recv_res = self.refresh_channel.recv() => {
                    match recv_res {
                        Some(request) => cur_request = Some(request),
                        None => return, // If refresh_channel was closed then cluster was dropped, we can stop working
                    }
                }
                recv_res = self.server_events_channel.recv() => {
                    if let Some(event) = recv_res {
                        debug!("Received server event: {:?}", event);
                        match event {
                            Event::TopologyChange(_) => (), // Refresh immediately
                            Event::StatusChange(status) => {
                                // If some node went down/up, update it's marker and refresh
                                // later as planned.

                                match status {
                                    StatusChangeEvent::Down(addr) => self.change_node_down_marker(addr, true),
                                    StatusChangeEvent::Up(addr) => self.change_node_down_marker(addr, false),
                                }
                                continue;
                            },
                            _ => continue, // Don't go to refreshing
                        }
                    } else {
                        // If server_events_channel was closed, than TopologyReader was dropped,
                        // so we can probably stop working too
                        return;
                    }
                }
                recv_res = self.use_keyspace_channel.recv() => {
                    match recv_res {
                        Some(request) => {
                            self.used_keyspace = Some(request.keyspace_name.clone());

                            let cluster_data = self.cluster_data.load_full();
                            let use_keyspace_future = Self::handle_use_keyspace_request(cluster_data, request);
                            tokio::spawn(use_keyspace_future.with_current_subscriber());
                        },
                        None => return, // If use_keyspace_channel was closed then cluster was dropped, we can stop working
                    }

                    continue; // Don't go to refreshing, wait for the next event
                }
                recv_res = self.control_connection_repair_channel.recv() => {
                    match recv_res {
                        Ok(()) => {
                            // The control connection was broken. Acknowledge that and start attempting to reconnect.
                            // The first reconnect attempt will be immediate (by attempting metadata refresh below),
                            // and if it does not succeed, then `control_connection_works` will be set to `false`,
                            // so subsequent attempts will be issued every second.
                        }
                        Err(tokio::sync::broadcast::error::RecvError::Lagged(_)) => {
                            // This is very unlikely; we would have to have a lot of concurrent
                            // control connections opened and broken at the same time.
                            // The best we can do is ignoring this.
                        }
                        Err(tokio::sync::broadcast::error::RecvError::Closed) => {
                            // If control_connection_repair_channel was closed then MetadataReader was dropped,
                            // we can stop working.
                            return;
                        }
                    }
                }
            }

            // Perform the refresh
            debug!("Requesting topology refresh");
            last_refresh_time = Instant::now();
            let refresh_res = self.perform_refresh().await;

            control_connection_works = refresh_res.is_ok();

            // Send refresh result if there was a request
            if let Some(request) = cur_request {
                // We can ignore sending error - if no one waits for the response we can drop it
                let _ = request.response_chan.send(refresh_res);
            }
        }
    }

    fn change_node_down_marker(&mut self, addr: SocketAddr, is_down: bool) {
        let cluster_data = self.cluster_data.load_full();

        // We need to iterate through the whole map here, but there will rarely more than ~100 nodes,
        // and changes of down marker are infrequent enough to afford this. As an important tradeoff,
        // we only keep one hashmap of known_peers, which is indexed by host IDs for node identification.
        let node = match cluster_data
            .known_peers
            .values()
            .find(|&peer| peer.address == NodeAddr::Translatable(addr))
        {
            Some(node) => node,
            None => {
                warn!("Unknown node address {}", addr);
                return;
            }
        };

        node.change_down_marker(is_down);
    }

    async fn handle_use_keyspace_request(
        cluster_data: Arc<ClusterData>,
        request: UseKeyspaceRequest,
    ) {
        let result = Self::send_use_keyspace(cluster_data, &request.keyspace_name).await;

        // Don't care if nobody wants request result
        let _ = request.response_chan.send(result);
    }

    async fn send_use_keyspace(
        cluster_data: Arc<ClusterData>,
        keyspace_name: &VerifiedKeyspaceName,
    ) -> Result<(), QueryError> {
        let use_keyspace_futures = cluster_data
            .known_peers
            .values()
            .map(|node| node.use_keyspace(keyspace_name.clone()));
        let use_keyspace_results: Vec<Result<(), QueryError>> =
            join_all(use_keyspace_futures).await;

        // If there was at least one Ok and the rest were IoErrors we can return Ok
        // keyspace name is correct and will be used on broken connection on the next reconnect

        // If there were only IoErrors then return IoError
        // If there was an error different than IoError return this error - something is wrong

        let mut was_ok: bool = false;
        let mut io_error: Option<Arc<std::io::Error>> = None;

        for result in use_keyspace_results {
            match result {
                Ok(()) => was_ok = true,
                Err(err) => match err {
                    QueryError::IoError(io_err) => io_error = Some(io_err),
                    _ => return Err(err),
                },
            }
        }

        if was_ok {
            return Ok(());
        }

        // We can unwrap io_error because use_keyspace_futures must be nonempty
        Err(QueryError::IoError(io_error.unwrap()))
    }

    async fn perform_refresh(&mut self) -> Result<(), QueryError> {
        // Read latest Metadata
        let metadata = self.metadata_reader.read_metadata(false).await?;
        let cluster_data: Arc<ClusterData> = self.cluster_data.load_full();

        let new_cluster_data = Arc::new(
            ClusterData::new(
                metadata,
                &self.pool_config,
                &cluster_data.known_peers,
                &self.used_keyspace,
                self.host_filter.as_deref(),
            )
            .await,
        );

        new_cluster_data
            .wait_until_all_pools_are_initialized()
            .await;

        self.update_cluster_data(new_cluster_data);

        Ok(())
    }

    fn update_cluster_data(&mut self, new_cluster_data: Arc<ClusterData>) {
        self.cluster_data.store(new_cluster_data);
    }
}