1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
// TYPING.rs
// by Lut99
//
// Created:
// 19 Aug 2022, 16:34:16
// Last edited:
// 08 Dec 2023, 11:09:07
// Auto updated?
// Yes
//
// Description:
//! Performs type analysis on the AST, i.e., resolving the types that
//! haven't been already and verifying the required ones are there.
//
use std::cell::{Ref, RefCell, RefMut};
use std::rc::Rc;
use brane_dsl::ast::{Block, Expr, Node, Program, Stmt};
use brane_dsl::spec::MergeStrategy;
use brane_dsl::symbol_table::{ClassEntry, FunctionEntry, SymbolTableEntry, VarEntry};
use brane_dsl::{DataType, SymbolTable, TextPos, TextRange};
use enum_debug::EnumDebug as _;
use crate::errors::AstError;
pub use crate::errors::TypeError as Error;
use crate::spec::BuiltinClasses;
use crate::warnings::AstWarning;
pub use crate::warnings::TypeWarning as Warning;
/***** TESTS *****/
#[cfg(test)]
mod tests {
use brane_dsl::ParserOptions;
use brane_shr::utilities::{create_data_index, create_package_index, test_on_dsl_files};
use specifications::data::DataIndex;
use specifications::package::PackageIndex;
use super::super::print::symbol_tables;
use super::*;
use crate::{CompileResult, CompileStage, compile_program_to};
/// Tests the traversal by generating symbol tables for every file.
#[test]
fn test_typing() {
test_on_dsl_files("BraneScript", |path, code| {
// Start by the name to always know which file this is
println!("{}", (0..80).map(|_| '-').collect::<String>());
println!("File '{}' gave us:", path.display());
// Load the package index
let pindex: PackageIndex = create_package_index();
let dindex: DataIndex = create_data_index();
let program: Program = match compile_program_to(code.as_bytes(), &pindex, &dindex, &ParserOptions::bscript(), CompileStage::Typing) {
CompileResult::Program(p, warns) => {
// Print warnings if any
for w in warns {
w.prettyprint(path.to_string_lossy(), &code);
}
p
},
CompileResult::Eof(err) => {
// Print the error
err.prettyprint(path.to_string_lossy(), &code);
panic!("Failed to analyse locations (see output above)");
},
CompileResult::Err(errs) => {
// Print the errors
for e in errs {
e.prettyprint(path.to_string_lossy(), &code);
}
panic!("Failed to analyse locations (see output above)");
},
_ => {
unreachable!();
},
};
// Now print the symbol tables for prettyness
symbol_tables::do_traversal(program, std::io::stdout()).unwrap();
println!("{}\n\n", (0..80).map(|_| '-').collect::<String>());
});
}
}
/***** HELPER FUNCTIONS *****/
/// Inserts a 'forced cast', i.e., makes sure the source type is casteable and then insret a new Cast expresion to make it so (if necessary).
///
/// Note that, for convenience, this function also evaluates the type of the given expression first.
///
/// # Arguments
/// - `expr`: The expression to cast. Note that we take ownership since we might want to wrap it in a Cast expression.
/// - `target`: The DataType to force a cast to.
/// - `symbol_table`: The SymbolTable that represents the current scope.
/// - `errors`: A list we use to accumulate errors as they occur.
///
/// # Returns
/// Returns either `expr` again, or an `Expr::Call` wrapping `expr`.
///
/// # Errors
/// This function errors if the source type is not casteable to the target type.
///
/// If errors occur, they are appended to the `errors` list. The same expression as given is returned in that case.
fn force_cast(expr: Expr, target: DataType, symbol_table: &Rc<RefCell<SymbolTable>>, errors: &mut Vec<Error>) -> Expr {
let mut expr: Expr = expr;
// Resolve the expression which we check first
let source: DataType = pass_expr(&mut expr, symbol_table, errors);
// If it's the same type, then we can early stop and simply return it (no casting needed)
if source == target {
return expr;
}
// Otherwise, fail it it cannot be casted
let range: TextRange = expr.range().clone();
if !source.coercible_to(&target) {
errors.push(Error::IncorrectType { got: source, expected: target, range });
return expr;
}
// Otherwise otherwise, insert the cast for when we will evaluate the expression's value.
Expr::new_cast(Box::new(expr), target, range)
}
/// Helper function that inserts casts in the given block around return statements appropriately.
///
/// Note that it assumes that the target type is compatible with the given block's type.
///
/// # Arguments
/// - `block`: The block who's return statements to cast.
/// - `data_type`: The DataType to cast to.
///
/// # Returns
/// Nothing, but does wrap the expressions of nested return statements in casts.
fn insert_casts_at_returns(s: &mut Stmt, target: &DataType) {
// Match the statement
use Stmt::*;
#[allow(clippy::collapsible_match)]
match s {
// Most blocks are just recursion
Block { block } => {
for s in block.stmts.iter_mut() {
insert_casts_at_returns(s, target);
}
},
If { consequent, alternative, .. } => {
for s in consequent.stmts.iter_mut() {
insert_casts_at_returns(s, target);
}
if let Some(alternative) = alternative {
for s in alternative.stmts.iter_mut() {
insert_casts_at_returns(s, target);
}
}
},
For { consequent, .. } => {
for s in consequent.stmts.iter_mut() {
insert_casts_at_returns(s, target);
}
},
While { consequent, .. } => {
for s in consequent.stmts.iter_mut() {
insert_casts_at_returns(s, target);
}
},
Parallel { .. } => {
// Any returns in parallels return the _branch_, not the current stream, so we ignore
},
// The return is the interesting one, obviously
Return { expr, .. } => {
// Wrap it in a cast to the target type if there is a return statement
if let Some(expr) = expr {
let range: TextRange = expr.range().clone();
*expr = brane_dsl::ast::Expr::new_cast(Box::new(expr.clone()), target.clone(), range);
}
},
// We ignore the rest
Import { .. } | FuncDef { .. } | ClassDef { .. } | LetAssign { .. } | Assign { .. } | Expr { .. } | Empty {} => {},
Attribute(_) | AttributeInner(_) => panic!("Encountered {:?} in typing traversal's 'insert_casts_at_returns()'", s.variant()),
}
}
/***** TRAVERSAL FUNCTIONS *****/
/// Attempts to resolve the type of this block and verifies it is well-types.
///
/// # Arguments
/// - `block`: The Block to traverse.
/// - `warnings`: A list that will collect any warnings during compilation. If it's empty, then it may be assumed for warnings occurred.
/// - `errors`: A list we use to accumulate errors as they occur.
///
/// # Returns
/// The return type of all the return statements in this block with the text range of the earliest return statement, or None if there are none.
///
/// # Errors
/// This function may error if there were semantic problems while analysing the type.
///
/// If errors occur, they are appended to the `errors` list. 'None' is returned in that case.
fn pass_block(block: &mut Block, warnings: &mut Vec<Warning>, errors: &mut Vec<Error>) -> Option<(DataType, TextRange)> {
// Simply recurse, examining if all return statements evaluate to the same value
let mut return_type: Option<(DataType, TextRange)> = None;
for s in block.stmts.iter_mut() {
// Analyse the statement
let stmt_type: Option<(DataType, TextRange)> = pass_stmt(s, &block.table, warnings, errors);
// Overwrite the return type if not yet, or error if it does not match
if let Some(stmt_type) = stmt_type {
// Compare
if let Some(return_type) = &return_type {
if !stmt_type.0.coercible_to(&return_type.0) {
errors.push(Error::IncompatibleReturns {
got: stmt_type.0,
expected: return_type.0.clone(),
got_range: stmt_type.1,
expected_range: return_type.1.clone(),
});
return None;
}
// Insert casts at the return statements if necessary
if stmt_type.0 != return_type.0 {
insert_casts_at_returns(s, &return_type.0);
}
} else {
return_type = Some(stmt_type);
}
}
}
// Set the return type
block.ret_type = return_type.as_ref().map(|(d, _)| d.clone());
// The table should now be populated for this block
return_type
}
/// Attempts to resolve the type of this statement and verifies it is well-types.
///
/// # Arguments
/// - `stmt`: The Stmt to traverse.
/// - `symbol_table`: The SymbolTable that represents the current scope.
/// - `warnings`: A list that will collect any warnings during compilation. If it's empty, then it may be assumed for warnings occurred.
/// - `errors`: A list we use to accumulate errors as they occur.
///
/// # Returns
/// The return type of all the return statements in this block with the text range of the earliest return statement, or None if there are none.
///
/// # Errors
/// This function may error if there were semantic problems while analysing the type.
///
/// If errors occur, they are appended to the `errors` list. 'None' is returned in that case.
fn pass_stmt(
stmt: &mut Stmt,
symbol_table: &Rc<RefCell<SymbolTable>>,
warnings: &mut Vec<Warning>,
errors: &mut Vec<Error>,
) -> Option<(DataType, TextRange)> {
// Match on the exact statement
use Stmt::*;
let return_type: Option<_> = match stmt {
Block { block, .. } => {
// Simply recurse the inner block
pass_block(block, warnings, errors)
},
Import { name, st_funcs, .. } => {
// Check if none of the functions return a Data
for f in st_funcs.as_ref().unwrap() {
let fe: Ref<FunctionEntry> = f.borrow();
if fe.signature.ret == DataType::Class(BuiltinClasses::Data.name().into()) {
errors.push(Error::IllegalDataReturnError { name: fe.name.clone(), range: name.range().clone() });
}
}
// Nothing returns here
None
},
FuncDef { params, code, st_entry, .. } => {
// If the first parameters happens to be the class, we can know that before resolving
if !params.is_empty() && ¶ms[0].value == "self" {
let entry: Ref<FunctionEntry> = st_entry.as_ref().unwrap().borrow();
entry.params[0].borrow_mut().data_type = DataType::Class(entry.class_name.clone().unwrap());
}
// Recurse into the block to resolve the parameters and such
let ret_type: DataType = pass_block(code, warnings, errors).map(|(d, _)| d).unwrap_or(DataType::Void);
// Extract the argument types if they are resolved
let mut entry: RefMut<FunctionEntry> = st_entry.as_ref().unwrap().borrow_mut();
entry.signature.args = {
let st: Ref<SymbolTable> = code.table.borrow();
params
.iter()
.map(|p| {
let entry: Rc<RefCell<VarEntry>> = st.get_var(&p.value).unwrap();
let e: Ref<VarEntry> = entry.borrow();
e.data_type.clone()
})
.collect()
};
// Set the return type
entry.signature.ret = ret_type;
// Return None since a function definition itself does not return
None
},
ClassDef { methods, st_entry, .. } => {
// Go into the method bodies to resolve them. Because we use a SymbolTable to map them, this automatically updates them in all relevant ways.
let entry: Ref<ClassEntry> = st_entry.as_ref().unwrap().borrow();
for m in methods.iter_mut() {
pass_stmt(m, &entry.symbol_table, warnings, errors);
}
// This statement itself never returns
None
},
Return { expr, range, ref mut data_type, .. } => {
// Resolve the type of the expression if any
let expr_type: DataType = if let Some(expr) = expr { pass_expr(expr, symbol_table, errors) } else { DataType::Void };
*data_type = expr_type.clone();
// Always returns that type
Some((expr_type, range.clone()))
},
If { ref mut cond, consequent, ref mut alternative, .. } => {
// Force the condition type to a boolean
*cond = force_cast(cond.clone(), DataType::Boolean, symbol_table, errors);
// Recurse into the bodies
let mut ret_type: Option<_> = pass_block(consequent, warnings, errors);
if let Some(alternative) = alternative {
let ret: Option<_> = pass_block(alternative, warnings, errors);
// Overwrite or make sure the return statements collide
if let Some(ret_type) = &ret_type {
if let Some(ret) = ret {
if !ret.0.coercible_to(&ret_type.0) {
errors.push(Error::IncompatibleReturns {
got: ret.0,
expected: ret_type.0.clone(),
got_range: ret.1,
expected_range: ret_type.1.clone(),
});
return None;
}
// Insert casts at the return statements if necessary
if ret.0 != ret_type.0 {
for s in alternative.stmts.iter_mut() {
insert_casts_at_returns(s, &ret_type.0);
}
}
}
} else {
ret_type = ret;
}
}
// Done
ret_type
},
For { initializer, ref mut condition, increment, consequent, .. } => {
// Resolve the initializer type
pass_stmt(initializer, &consequent.table, warnings, errors);
// Force the condition type to a boolean
*condition = force_cast(condition.clone(), DataType::Boolean, symbol_table, errors);
// Resolve the increment type
pass_stmt(increment, &consequent.table, warnings, errors);
// Descent into the consequent
pass_block(consequent, warnings, errors)
},
While { condition, consequent, .. } => {
// Force the condition type to a boolean
*condition = force_cast(condition.clone(), DataType::Boolean, symbol_table, errors);
// Descent into the consequent
pass_block(consequent, warnings, errors)
},
Parallel { result, blocks, merge, st_entry, attrs: _, range } => {
// First, examine the result types of each of the blocks and make sure they evaluate to the same
let mut ret_type: Option<(DataType, TextRange)> = None;
for (i, b) in blocks.iter_mut().enumerate() {
// Get the return type of the block (if any)
let ret: Option<(DataType, TextRange)> = pass_block(b, warnings, errors);
// Check if there is at least something if we expect it to
if result.is_some() && (ret.is_none() || ret.as_ref().unwrap().0 == DataType::Void) {
errors.push(Error::ParallelNoReturn { block: i, range: b.range().clone() });
return None;
}
#[allow(clippy::unnecessary_unwrap)]
if result.is_none() && (ret.is_some() && ret.as_ref().unwrap().0 != DataType::Void) {
errors.push(Error::ParallelUnexpectedReturn { block: i, got: ret.unwrap().0, range: b.range().clone() });
return None;
}
// If that checks out, make sure it matches the return type of the previous ones
if let Some(ret_type) = &ret_type {
if let Some(ret) = ret {
if !ret.0.coercible_to(&ret_type.0) {
errors.push(Error::IncompatibleReturns {
got: ret.0,
expected: ret_type.0.clone(),
got_range: ret.1,
expected_range: ret_type.1.clone(),
});
return None;
}
// Insert casts at the return statements if necessary
if ret.0 != ret_type.0 {
for s in &mut b.stmts {
insert_casts_at_returns(s, &ret_type.0);
}
}
} else {
errors.push(Error::ParallelIncompleteReturn { block: i, expected: ret_type.0.clone(), range: b.range().clone() });
return None;
}
} else {
ret_type = ret;
}
}
// With a return statement in mind, we will now resolve if the type matches the merge strategy
let strat: (MergeStrategy, TextRange) =
if let Some(merge) = merge { (MergeStrategy::from(&merge.value), merge.range.clone()) } else { (MergeStrategy::None, range.clone()) };
// Match on the result type
if let Some(ret) = &ret_type {
// Match on the strategy to verify the types
match strat.0 {
MergeStrategy::First | MergeStrategy::FirstBlocking | MergeStrategy::Last => {
// Any will do (except void ofcourse)
if let DataType::Void = &ret.0 {
errors.push(Error::ParallelIllegalType {
merge: strat.0,
got: ret.0.clone(),
expected: vec![DataType::Any],
range: ret.1.clone(),
reason: strat.1,
});
return None;
}
},
MergeStrategy::Sum | MergeStrategy::Product | MergeStrategy::Max | MergeStrategy::Min => {
// Only integers and reals
match &ret.0 {
DataType::Integer | DataType::Real => {},
_ => {
errors.push(Error::ParallelIllegalType {
merge: strat.0,
got: ret.0.clone(),
expected: vec![DataType::Integer, DataType::Real],
range: ret.1.clone(),
reason: strat.1,
});
return None;
},
}
},
MergeStrategy::All => {
// As usual, except that we replace the return type with an array
ret_type = Some((DataType::Array(Box::new(ret.0.clone())), ret.1.clone()));
},
MergeStrategy::None => {
// Error! This should not happen!
errors.push(Error::ParallelNoStrategy { range: strat.1 });
return None;
},
}
} else if strat.0 != MergeStrategy::None {
// Specified for nothing
warnings.push(Warning::UnusedMergeStrategy { merge: strat.0, range: strat.1 });
}
// Link the found return type in our own statement, if any
if let Some(st_entry) = st_entry.as_ref() {
let mut entry: RefMut<VarEntry> = st_entry.borrow_mut();
entry.data_type = ret_type.unwrap_or((DataType::Void, TextRange::none())).0;
}
// A parallel statement itself does not return, though
None
},
LetAssign { value, st_entry, .. } => {
// Resolve the type of the expression
let data_type: DataType = pass_expr(value, symbol_table, errors);
// That's our type too
let mut entry: RefMut<VarEntry> = st_entry.as_ref().unwrap().borrow_mut();
entry.data_type = data_type;
// A LetAssign never returns
None
},
Assign { ref mut value, st_entry, .. } => {
// Get the current datatype (should always be resolved, since otherwise it would have been marked as undeclared)
let data_type: DataType = {
let entry: Ref<VarEntry> = st_entry.as_ref().unwrap().borrow();
entry.data_type.clone()
};
// If the data type is Null or Any, then we might override the value instead of casting
if data_type == DataType::Any {
let expr_type: DataType = pass_expr(value, symbol_table, errors);
st_entry.as_ref().unwrap().borrow_mut().data_type = expr_type;
} else {
// Force a cast to this variable's type on the expression
*value = force_cast(value.clone(), data_type, symbol_table, errors);
}
// An Assigns never returns
None
},
Expr { expr, ref mut data_type, .. } => {
// Recurse into the expression
*data_type = pass_expr(expr, symbol_table, errors);
// A simple expr statement never returns
None
},
// We ignore the rest
Empty { .. } => None,
Attribute(_) | AttributeInner(_) => panic!("Encountered {:?} in typing traversal", stmt.variant()),
};
// We're done here
return_type
}
/// Resolves the type of the given expression, making sure everything checks out along the way.
///
/// # Arguments
/// - `expr`: The Expr to traverse.
/// - `symbol_table`: The SymbolTable that represents the current scope.
/// - `errors`: A list we use to accumulate errors as they occur.
///
/// # Returns
/// The evaluated type of the expression.
///
/// # Errors
/// This function may error if there were semantic problems while analysing the type.
///
/// If errors occur, they are appended to the `errors` list. 'Any' is returned in that case.
fn pass_expr(expr: &mut Expr, symbol_table: &Rc<RefCell<SymbolTable>>, errors: &mut Vec<Error>) -> DataType {
// Match the expression
use Expr::*;
match expr {
Cast { expr, target, .. } => {
// Evaluate the expression
let data_type: DataType = pass_expr(expr, symbol_table, errors);
// Check if it's casteable to the target
if !data_type.coercible_to(&target) {
errors.push(Error::IncorrectType { got: data_type, expected: target.clone(), range: expr.range().clone() });
return DataType::Any;
}
// Return the target as to-be-evaluated type
target.clone()
},
Call { expr, args, ref mut st_entry, range, .. } => {
// Get the referenced function entry in the identifier
let st: Ref<SymbolTable> = symbol_table.borrow();
let f_entry: Rc<RefCell<FunctionEntry>> = match &**expr {
Expr::Proj { st_entry, .. } => {
// Attempt to cast the general entry to a function entry
if let Some(entry) = st_entry.as_ref() {
match entry {
SymbolTableEntry::FunctionEntry(f) => f.clone(),
SymbolTableEntry::VarEntry(v) => {
let entry: Ref<VarEntry> = v.borrow();
errors.push(Error::NonFunctionCall {
got: entry.data_type.clone(),
range: expr.range().clone(),
defined_range: range.clone(),
});
return DataType::Any;
},
_ => {
panic!("Encountered non-Var, non-Function symbol table entry type in projection");
},
}
} else {
// The SymbolTable entry was not yet resolved; any further analysis will have to wait until runtime.
return DataType::Any;
}
},
Expr::Identifier { name, .. } => {
// Search the symbol table for this identifier
match st.get_func(&name.value) {
Some(entry) => entry,
None => {
errors.push(Error::UndefinedFunctionCall { name: name.value.clone(), range: name.range.clone() });
return DataType::Any;
},
}
},
_ => {
panic!("Encountered non-Proj, non-Identifier expression as identifier for a call expression");
},
};
// Check if the number of arguments matches the expected amount
let fe: Ref<FunctionEntry> = f_entry.borrow();
// Don't forget to compensate for the implicit 'self'
if fe.signature.args.len() - usize::from(fe.class_name.is_some()) != args.len() {
errors.push(Error::FunctionArityError {
name: fe.name.clone(),
got: args.len(),
expected: fe.signature.args.len(),
got_range: TextRange::new(
args.iter().next().map(|a| a.start().clone()).unwrap_or(TextPos::none()),
args.iter().last().map(|a| a.end().clone()).unwrap_or(TextPos::none()),
),
expected_range: fe.range.clone(),
});
return DataType::Any;
}
// Make sure the types match
for (i, a) in args.iter_mut().enumerate() {
*a = Box::new(force_cast(*a.clone(), fe.signature.args[i].clone(), symbol_table, errors));
}
// It does; return the return type
*st_entry = Some(f_entry.clone());
fe.signature.ret.clone()
},
Array { values, ref mut data_type, .. } => {
// Make sure all values evaluate to the same type
let mut elem_type: Option<(DataType, TextRange)> = None;
for v in values.iter_mut() {
// Evaluate the expression
let expr_type: DataType = pass_expr(v, symbol_table, errors);
// Make sure it is the same as used before
if let Some((elem_type, range)) = &elem_type {
if !expr_type.coercible_to(elem_type) {
errors.push(Error::InconsistentArrayError {
got: expr_type,
expected: elem_type.clone(),
got_range: v.range().clone(),
expected_range: range.clone(),
});
return DataType::Any;
}
// Insert a cast in the value if necessary
if &expr_type != elem_type {
let range: TextRange = v.range().clone();
*v = Box::new(Expr::new_cast(v.clone(), elem_type.clone(), range));
}
} else {
elem_type = Some((expr_type, v.range().clone()));
}
}
let elem_type: DataType = elem_type.map(|(d, _)| d).unwrap_or(DataType::Any);
// Set the type internally
*data_type = elem_type.clone();
// Return the found type (if it's an empty array, it has type any)
DataType::Array(Box::new(elem_type))
},
ArrayIndex { array, ref mut index, ref mut data_type, .. } => {
// Make sure the array evaluates to an Array type and get the inner type (no implicit casting here).
let arr_type: DataType = pass_expr(array, symbol_table, errors);
let elem_type: DataType = if let DataType::Array(t) = arr_type {
*t
} else {
errors.push(Error::NonArrayIndexError { got: arr_type, range: array.range().clone() });
return DataType::Any;
};
*data_type = elem_type.clone();
// Make sure the index is a number
*index = Box::new(force_cast((**index).clone(), DataType::Integer, symbol_table, errors));
// Return the element type as evaluated type
elem_type
},
Pattern { .. } => {
// Let's for now not worry about this
todo!();
},
UnaOp { op, ref mut expr, .. } => {
// Depending on the operation, check the types
match op {
brane_dsl::ast::UnaOp::Not { .. } => {
// Expect boolean, return boolean
*expr = Box::new(force_cast((**expr).clone(), DataType::Boolean, symbol_table, errors));
DataType::Boolean
},
brane_dsl::ast::UnaOp::Neg { .. } => {
// Expect integer or real, return the same thing
let mut expr_type: DataType = pass_expr(expr, symbol_table, errors);
if expr_type != DataType::Integer && expr_type != DataType::Real {
*expr = Box::new(force_cast((**expr).clone(), DataType::Integer, symbol_table, errors));
expr_type = DataType::Integer;
}
expr_type
},
brane_dsl::ast::UnaOp::Prio { .. } => {
// Simply return the contents' type
pass_expr(expr, symbol_table, errors)
},
// The rest should never get here
op => {
panic!("Got unary operator '{op}' in a UnaOp expression; this should never happen!");
},
}
},
BinOp { op, ref mut lhs, ref mut rhs, .. } => {
// Match the operator to determine how to evaluate it
match op {
brane_dsl::ast::BinOp::And { .. } | brane_dsl::ast::BinOp::Or { .. } => {
// Expect boolean, return boolean
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Boolean, symbol_table, errors));
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Boolean, symbol_table, errors));
DataType::Boolean
},
brane_dsl::ast::BinOp::Add { .. } => {
// First evaluate the sides
let mut lhs_type: DataType = pass_expr(lhs, symbol_table, errors);
let mut rhs_type: DataType = pass_expr(rhs, symbol_table, errors);
// If both are Any, there is not much more to say
if (lhs_type == DataType::Any) && (rhs_type == DataType::Any) {
} else {
// If the types are (runtime) strings, then treat as such
if (lhs_type == DataType::String || lhs_type == DataType::Any) && (rhs_type == DataType::String || rhs_type == DataType::Any)
{
*lhs = Box::new(force_cast((**lhs).clone(), DataType::String, symbol_table, errors));
*rhs = Box::new(force_cast((**rhs).clone(), DataType::String, symbol_table, errors));
lhs_type = DataType::String;
} else {
// Now either has to be an integer or a real, or casteable to one
if lhs_type != DataType::Integer && lhs_type != DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Integer, symbol_table, errors));
lhs_type = DataType::Integer;
}
if rhs_type != DataType::Integer && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Integer, symbol_table, errors));
rhs_type = DataType::Integer;
}
// Finally, if either is real and the other not, promote it
if lhs_type == DataType::Real && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Real, symbol_table, errors));
}
if lhs_type != DataType::Real && rhs_type == DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Real, symbol_table, errors));
}
}
}
// Return the type of the lhs (which is now the same as rhs)
lhs_type
},
brane_dsl::ast::BinOp::Sub { .. } | brane_dsl::ast::BinOp::Mul { .. } | brane_dsl::ast::BinOp::Div { .. } => {
// First evaluate the sides
let mut lhs_type: DataType = pass_expr(lhs, symbol_table, errors);
let mut rhs_type: DataType = pass_expr(rhs, symbol_table, errors);
// Now either has to be an integer or a real, or casteable to one
if lhs_type != DataType::Integer && lhs_type != DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Integer, symbol_table, errors));
lhs_type = DataType::Integer;
}
if rhs_type != DataType::Integer && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Integer, symbol_table, errors));
rhs_type = DataType::Integer;
}
// Finally, if either is real and the other not, promote it
if lhs_type == DataType::Real && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Real, symbol_table, errors));
}
if lhs_type != DataType::Real && rhs_type == DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Real, symbol_table, errors));
}
// Return the type of the lhs (which is now the same as rhs)
lhs_type
},
brane_dsl::ast::BinOp::Mod { .. } => {
// Expect two integers
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Integer, symbol_table, errors));
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Integer, symbol_table, errors));
DataType::Integer
},
brane_dsl::ast::BinOp::Eq { .. } | brane_dsl::ast::BinOp::Ne { .. } => {
// Do pass them, even though we don't care about the type
pass_expr(lhs, symbol_table, errors);
pass_expr(rhs, symbol_table, errors);
// Both sides can be anything but just return bool
DataType::Boolean
},
brane_dsl::ast::BinOp::Lt { .. }
| brane_dsl::ast::BinOp::Le { .. }
| brane_dsl::ast::BinOp::Gt { .. }
| brane_dsl::ast::BinOp::Ge { .. } => {
// First evaluate the sides
let mut lhs_type: DataType = pass_expr(lhs, symbol_table, errors);
let mut rhs_type: DataType = pass_expr(rhs, symbol_table, errors);
// Now either has to be an integer or a real, or casteable to one
if lhs_type != DataType::Integer && lhs_type != DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Integer, symbol_table, errors));
lhs_type = DataType::Integer;
}
if rhs_type != DataType::Integer && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Integer, symbol_table, errors));
rhs_type = DataType::Integer;
}
// Finally, if either is real and the other not, promote it
if lhs_type == DataType::Real && rhs_type != DataType::Real {
*rhs = Box::new(force_cast((**rhs).clone(), DataType::Real, symbol_table, errors));
}
if lhs_type != DataType::Real && rhs_type == DataType::Real {
*lhs = Box::new(force_cast((**lhs).clone(), DataType::Real, symbol_table, errors));
}
// Now return a boolean
DataType::Boolean
},
}
},
Proj { st_entry, .. } => {
// Match either a variable or method
if let Some(entry) = st_entry.as_ref() {
match entry {
SymbolTableEntry::FunctionEntry(f) => f.borrow().signature.ret.clone(),
SymbolTableEntry::VarEntry(v) => v.borrow().data_type.clone(),
_ => {
panic!("Encountered non-Var, non-Function symbol table entry type in projection");
},
}
} else {
DataType::Any
}
},
Instance { name, properties, st_entry, .. } => {
// Get the underlying type's symbol table
let entry: Ref<ClassEntry> = st_entry.as_ref().unwrap().borrow();
let cst: Ref<SymbolTable> = entry.symbol_table.borrow();
// Start by resolving the property types
for p in properties.iter_mut() {
// Get the type of this property (whether it is part of this type or not is checked in the previous traversal)
let p_type: DataType = cst.get_var(&p.name.value).unwrap().borrow().data_type.clone();
// Make sure evaluation is correct
*p.value = force_cast((*p.value).clone(), p_type, symbol_table, errors);
}
// Return the class name as its type
DataType::Class(name.value.clone())
},
VarRef { st_entry, .. } => {
// Return the type of this variable reference
st_entry.as_ref().unwrap().borrow().data_type.clone()
},
Literal { literal } => {
// Simply return the type of the literal
literal.data_type()
},
// The rest is ambigious
_ => DataType::Any,
}
}
/***** LIBRARY *****/
/// Resolves typing in the given `brane-dsl` AST.
///
/// Note that the symbol tables must already have been constructed.
///
/// This effectively resolves all unresolved types in the symbol tables and verifies everything is compatible. Additionally, it may also insert implicit type casts where able.
///
/// # Arguments
/// - `root`: The root node of the tree on which this compiler pass will be done.
/// - `warnings`: A list that will collect any warnings during compilation. If it's empty, then it may be assumed for warnings occurred.
///
/// # Returns
/// The same nodes as went in, but now with no unresolved types.
///
/// # Errors
/// This pass may throw multiple `AstError::ResolveError`s if the user made mistakes with their variable references.
pub fn do_traversal(root: Program, warnings: &mut Vec<AstWarning>) -> Result<Program, Vec<AstError>> {
let mut root = root;
let mut warns: Vec<Warning> = vec![];
// Iterate over all statements to deduce type information (if relevant)
let mut errors: Vec<Error> = vec![];
for s in root.block.stmts.iter_mut() {
if let Some((ret_type, ret_range)) = pass_stmt(s, &root.block.table, &mut warns, &mut errors) {
if ret_type == DataType::Class(BuiltinClasses::IntermediateResult.name().into()) {
warnings.push(Warning::ReturningIntermediateResult { range: ret_range }.into());
}
}
}
// Done
warnings.append(&mut warns.into_iter().map(|w| w.into()).collect::<Vec<AstWarning>>());
if errors.is_empty() { Ok(root) } else { Err(errors.into_iter().map(|e| e.into()).collect()) }
}