1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
// SPEC.rs
// by Lut99
//
// Created:
// 10 Aug 2022, 14:03:04
// Last edited:
// 16 Nov 2022, 16:40:19
// Auto updated?
// Yes
//
// Description:
//! Contains (some of the) common structs and interfaces for the
//! `brane-dsl` crate.
//
use std::fmt::{Debug, Display, Formatter, Result as FResult};
use std::str::FromStr;
use nom::AsBytes;
use nom_locate::LocatedSpan;
use serde::{Deserialize, Serialize};
use crate::errors::LanguageParseError;
/***** LIBRARY *****/
/// Defines a position in the input text.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct TextPos {
/// The y-coordinate of the position (one-indexed)
#[serde(rename = "l")]
pub line: usize,
/// The x-coordinate of the position (one-indexed)
#[serde(rename = "c")]
pub col: usize,
}
impl TextPos {
/// Constructor for the TextPos.
///
/// # Arguments
/// - `line`: The line number.
/// - `col`: The column number.
///
/// # Returns
/// A new TextPos instance with the given line and column number.
#[inline]
pub const fn new(line: usize, col: usize) -> Self { Self { line, col } }
/// Constructor for the TextPos that initializes it to 'none'.
///
/// # Returns
/// A new TextPos instance that represents 'no position'.
#[inline]
pub const fn none() -> Self { Self { line: usize::MAX, col: usize::MAX } }
/// Constructor for the TextPos that initializes it to the end of the given Span.
///
/// Concretely, it adds the length of the span to the Span's start location, modulo any newlines ('\n') it finds.
///
/// # Generic types
/// - `T`: The type stored in the LocatedSpan.
/// - `X`: Any extra information stored in the span.
///
/// # Arguments
/// - `span`: The LocatedSpan that contains both the text and position that we will use to compute the end position.
///
/// # Returns
/// A new TextPos instance that points to the end of the span (inclusive).
pub fn end_of<T: AsBytes, X>(span: &LocatedSpan<T, X>) -> Self {
// Get the bytes of the Span's type.
let bs: &[u8] = span.fragment().as_bytes();
// Get the position of the last newline and count them while at it
let mut n_nls: usize = 0;
let mut last_nl: usize = usize::MAX;
for (i, b) in bs.iter().enumerate() {
if *b == b'\n' {
n_nls += 1;
last_nl = i;
}
}
// Use those to compute offsets for the lines and columns
Self {
line: span.location_line() as usize + n_nls,
col: if last_nl < usize::MAX { bs.len() - (last_nl + 1) } else { span.get_column() + bs.len() },
}
}
/// Returns if this TextPos is a position (i.e., does not represent 'no position').
///
/// # Returns
/// Whether or not this TextPos represents a useable position (true) or if it is 'no position' (false).
#[inline]
pub const fn is_some(&self) -> bool { self.line != usize::MAX || self.col != usize::MAX }
/// Returns if this TextPos is _not_ a position (i.e., represents 'no position').
///
/// # Returns
/// Whether or not this TextPos represents a useable position (false) or if it is 'no position' (true).
#[inline]
pub const fn is_none(&self) -> bool { !self.is_some() }
}
impl Default for TextPos {
#[inline]
fn default() -> Self { Self::none() }
}
impl Display for TextPos {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> FResult { write!(f, "{}:{}", self.line, self.col) }
}
impl<T: AsBytes, X> From<LocatedSpan<T, X>> for TextPos {
#[inline]
fn from(value: LocatedSpan<T, X>) -> Self {
// Delegate to the by-reference one
Self::from(&value)
}
}
impl<T: AsBytes, X> From<&LocatedSpan<T, X>> for TextPos {
#[inline]
fn from(value: &LocatedSpan<T, X>) -> Self { Self { line: value.location_line() as usize, col: value.get_column() } }
}
/// Defines a range (i.e., a span of positions).
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct TextRange {
/// The start position (inclusive) in the range.
#[serde(rename = "s")]
pub start: TextPos,
/// The end position (inclusive) in the range.
#[serde(rename = "e")]
pub end: TextPos,
}
impl TextRange {
/// Constructor for the TextRange.
///
/// # Arguments
/// - `start`: The start position (inclusive) in the range.
/// - `end`: The end position (inclusive) in the range.
///
/// # Returns
/// A new TextRange instance.
#[inline]
pub const fn new(start: TextPos, end: TextPos) -> Self { Self { start, end } }
/// Constructor for the TextRange that initializes it to 'none'.
///
/// # Returns
/// A new TextRange instance that represents 'no range'.
#[inline]
pub const fn none() -> Self { Self { start: TextPos::none(), end: TextPos::none() } }
/// Returns if this TextRange is a range (i.e., does not represent 'no range').
///
/// # Returns
/// Whether or not this TextRange represents a useable range (true) or if it is 'no range' (false).
#[inline]
pub const fn is_some(&self) -> bool { self.start.is_some() && self.end.is_some() }
/// Returns if this TextRange is _not_ a range (i.e., represents 'no range').
///
/// # Returns
/// Whether or not this TextRange represents a useable range (false) or if it is 'no range' (true).
#[inline]
pub const fn is_none(&self) -> bool { !self.is_some() }
}
impl Default for TextRange {
#[inline]
fn default() -> Self { Self::none() }
}
impl<T: AsBytes, X> From<LocatedSpan<T, X>> for TextRange {
#[inline]
fn from(value: LocatedSpan<T, X>) -> Self {
// Delegate to the by-reference one
Self::from(&value)
}
}
impl<T: AsBytes, X> From<&LocatedSpan<T, X>> for TextRange {
#[inline]
fn from(value: &LocatedSpan<T, X>) -> Self { Self { start: TextPos::from(value), end: TextPos::end_of(value) } }
}
impl<T1: AsBytes, T2: AsBytes, X1, X2> From<(LocatedSpan<T1, X1>, LocatedSpan<T2, X2>)> for TextRange {
#[inline]
fn from(value: (LocatedSpan<T1, X1>, LocatedSpan<T2, X2>)) -> Self { Self::from((&value.0, &value.1)) }
}
impl<T1: AsBytes, T2: AsBytes, X1, X2> From<(&LocatedSpan<T1, X1>, &LocatedSpan<T2, X2>)> for TextRange {
#[inline]
fn from(value: (&LocatedSpan<T1, X1>, &LocatedSpan<T2, X2>)) -> Self { Self { start: TextPos::from(value.0), end: TextPos::end_of(value.1) } }
}
/// Defines the languages from which we can compile.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum Language {
/// Define BraneScript (more script-like)
BraneScript,
/// Define Bakery (more natural-language-like)
Bakery,
}
impl Display for Language {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
use Language::*;
match self {
BraneScript => write!(f, "BraneScript"),
Bakery => write!(f, "Bakery"),
}
}
}
impl FromStr for Language {
type Err = LanguageParseError;
fn from_str(value: &str) -> Result<Self, Self::Err> {
match value {
"bscript" => Ok(Self::BraneScript),
"bakery" => Ok(Self::Bakery),
raw => Err(LanguageParseError::UnknownLanguageId { raw: raw.into() }),
}
}
}
/// Defines merge strategies for the parallel statements.
#[derive(Clone, Copy, Debug, Deserialize, Eq, PartialEq, Hash, Serialize)]
pub enum MergeStrategy {
/// Take the value that arrived first. The statement will already return as soon as this statement is in, not the rest.
First,
/// Take the value that arrived first. The statement will still block until all values returned.
FirstBlocking,
/// Take the value that arrived last.
Last,
/// Add all the resulting values together. This means that they must all be numeric.
Sum,
/// Multiple all the resulting values together. This means that they must all be numeric.
Product,
/// Take the largest value. Use on booleans to get an 'OR'-effect (i.e., it returns true iff there is at least one true).
Max,
/// Take the smallest value. Use on booleans to get an 'AND'-effect (i.e., it returns false iff there is at least one false).
Min,
/// Returns all values as an Array.
All,
/// No merge strategy needed
None,
}
impl From<&str> for MergeStrategy {
#[inline]
fn from(value: &str) -> Self {
match value.to_lowercase().as_str() {
"first" => Self::First,
"first*" => Self::FirstBlocking,
"last" => Self::Last,
"+" | "sum" => Self::Sum,
"*" | "product" => Self::Product,
"max" => Self::Max,
"min" => Self::Min,
"all" => Self::All,
_ => Self::None,
}
}
}
impl From<&String> for MergeStrategy {
#[inline]
fn from(value: &String) -> Self { Self::from(value.as_str()) }
}
impl From<String> for MergeStrategy {
#[inline]
fn from(value: String) -> Self { Self::from(value.as_str()) }
}
// /// Defines the supported data types in BraneScript/Bakery.
// #[derive(Clone, Debug, Eq, PartialEq, Hash)]
// pub enum DataType {
// /// Special data type that can be thought of as 'type check deferred to runtime'.
// Any,
// /// Binary values ('true' or 'false')
// Boolean,
// /// Non-decimal numerical values (signed or unsigned)
// Integer,
// /// Decimal numerical values
// Real,
// /// Text values
// String,
// /// Version numbers (as `major.minor.patch`).
// Semver,
// ///.It's an Array type.
// Array(Box<Self>),
// /// It's a custom Class type.
// Class(String),
// /// No type / no value
// Void,
// }
// impl DataType {
// /// Returns whether this data type may be casted to the other type.
// ///
// /// In other words, expresses some 'returns the same' proprety of a type.
// ///
// /// # Generic arguments
// /// - `D`: The DataType-like type of the `other` datatype.
// ///
// /// # Arguments
// /// - `other`: The other data type to check compatibility with.
// ///
// /// # Returns
// /// Whether or not this type casts to the other type (true) or not (false).
// pub fn casts_to<D: AsRef<DataType>>(&self, other: D) -> bool {
// // Match as pairs
// use DataType::*;
// match (self, other.as_ref()) {
// // Specific casts
// (Integer, Boolean) => true,
// (Boolean, Integer) => true,
// (Boolean, Real) => true,
// (Integer, Real) => true,
// // Array casts
// (t, Array(b)) => t == &**b,
// // Always-valid casts
// (Any, _) => true,
// (_, Any) => true,
// (_, String) => true,
// (t1, t2) => {
// // Type can always cast to themselves
// std::mem::discriminant(t1) == std::mem::discriminant(t2)
// }
// }
// }
// }
// impl AsRef<DataType> for DataType {
// #[inline]
// fn as_ref(&self) -> &DataType {
// self
// }
// }
// impl From<&str> for DataType {
// #[inline]
// fn from(value: &str) -> Self {
// // Match the str value
// match value.trim() {
// "bool" | "boolean" => DataType::Boolean,
// "int" | "integer" => DataType::Integer,
// "real" | "float " => DataType::Real,
// "string" => DataType::String,
// "[bool]" | "[boolean]" => DataType::Array(Box::new(DataType::Boolean)),
// "[int]" | "[integer]" => DataType::Array(Box::new(DataType::Integer)),
// "[real]" | "[float] " => DataType::Array(Box::new(DataType::Real)),
// "[string]" => DataType::Array(Box::new(DataType::String)),
// raw => DataType::Class(raw.into()),
// }
// }
// }
// impl From<&String> for DataType {
// #[inline]
// fn from(value: &String) -> Self {
// Self::from(value.as_str())
// }
// }
// impl From<String> for DataType {
// #[inline]
// fn from(value: String) -> Self {
// Self::from(value.as_str())
// }
// }
// impl Display for DataType {
// #[inline]
// fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
// use DataType::*;
// match self {
// Any => write!(f, "Any"),
// Boolean => write!(f, "Boolean"),
// Integer => write!(f, "Integer"),
// Real => write!(f, "Real"),
// String => write!(f, "String"),
// Semver => write!(f, "Semver"),
// Array(t) => write!(f, "Array<{}>", t),
// Class(name) => write!(f, "{}", name),
// Void => write!(f, "Void"),
// }
// }
// }
// /// Defines a symbol table entry for functions.
// ///
// /// Note that the identifier is not stored here, but as a key mapping to this entry.
// #[derive(Clone, Debug)]
// pub struct STFuncEntry {
// /// The name of the package from which this function originates, if any.
// pub package : Option<String>,
// /// Gives both the arguments and their data types as the return type (i.e., the function's signature). `DataType::Void` should not occur in the arguments, but may in the return value.
// pub signature : Option<(Vec<DataType>, DataType)>,
// /// The range of the function in the original source text (for debugging).
// pub range : TextRange,
// /// A reference to the parent symbol table.
// pub symbol_table : Rc<RefCell<SymbolTable>>,
// }
// /// Defines a symbol table entry for classes.
// ///
// /// Note that the identifier is not stored here, but as a key mapping to this entry.
// #[derive(Clone, Debug)]
// pub struct STClassEntry {
// /// The properties in this class entry, mapped as name to its data type.
// pub props : HashMap<String, DataType>,
// /// The methods in this class entry, mapped as name to a tuple of its parameters and its return type.
// pub methods : HashMap<String, Option<(Vec<DataType>, DataType)>>,
// /// The range of the function in the original source text (for debugging).
// pub range : TextRange,
// /// A reference to the parent symbol table.
// pub symbol_table : Rc<RefCell<SymbolTable>>,
// }
// /// Defines a symbol table entry for variables.
// ///
// /// Note that the identifier is not stored here, but as a key mapping to this entry.
// #[derive(Clone, Debug)]
// pub struct STVarEntry {
// /// If this is a parameter, references the name of the function this is a parameter for.
// pub function : Option<String>,
// /// The data type of this variable as soon as it is known.
// pub data_type : Option<DataType>,
// /// The range of the variable entry in the original source text (for debugging).
// pub range : TextRange,
// /// A reference to the parent symbol table.
// pub symbol_table : Rc<RefCell<SymbolTable>>,
// }
// /// Defines a SymbolTable, which is used by the `brane-ast` crate to keep track of declared variables in their own scopes.
// #[derive(Clone, Debug)]
// pub struct SymbolTable {
// /// The symbol table in the parent scope, if any. Might be unpopulated at first.
// pub parent : Option<Rc<RefCell<Self>>>,
// /// The table for function scopes. Maps identifiers to STFuncEntry.
// pub func : HashMap<String, Rc<RefCell<SymbolTableEntry>>>,
// /// The table for class (type) scopes. Maps identifiers to STClassEntry.
// pub clss : HashMap<String, Rc<RefCell<SymbolTableEntry>>>,
// /// The table for variable scopes. Maps identifiers to STVarEntry.
// pub vars : HashMap<String, Rc<RefCell<SymbolTableEntry>>>,
// }
// impl SymbolTable {
// /// Constructor for the SymbolTable that initializes it uninitializes (i.e., it has yet to be populated).
// ///
// /// # Returns
// /// A new, empty SymbolTable instance that is already pre-wrapped in an Rc and RefCell.
// #[inline]
// pub fn empty() -> Rc<RefCell<Self>> {
// Rc::new(RefCell::new(Self {
// parent : None,
// func : HashMap::with_capacity(16),
// clss : HashMap::with_capacity(16),
// vars : HashMap::with_capacity(16),
// }))
// }
// /// Adds an STFuncEntry to the SymbolTable as a builtin.
// ///
// /// The types of the arguments and return type need to be deduced later during type analysis.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `name`: The name/identifier of the function.
// /// - `signature`: The function's signature (i.e., a list of data types (and thus the number) of arguments and its return type).
// /// - `range`: The range of the function in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a function entry with this name already exists.
// pub fn add_builtin_entry(this: &Rc<RefCell<SymbolTable>>, name: String, signature: (Vec<DataType>, DataType), range : TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.func.contains_key(&name) { return Err(SymbolTableError::DuplicateFunction{ name: name.clone(), existing: st.func.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STFuncEntry>> = Rc::new(RefCell::new(STFuncEntry {
// package : None,
// signature : Some(signature),
// range,
// symbol_table : this.clone(),
// }));
// st.func.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Adds an STFuncEntry to the SymbolTable.
// ///
// /// The types of the arguments and return type need to be deduced later during type analysis.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `name`: The name/identifier of the function.
// /// - `range`: The range of the function in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a function entry with this name already exists.
// pub fn add_func_entry(this: &Rc<RefCell<SymbolTable>>, name: String, range : TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.func.contains_key(&name) { return Err(SymbolTableError::DuplicateFunction{ name: name.clone(), existing: st.func.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STFuncEntry>> = Rc::new(RefCell::new(STFuncEntry {
// package : None,
// signature : None,
// range,
// symbol_table : this.clone(),
// }));
// st.func.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Adds an STFuncEntry to the SymbolTable but for a package function.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `package_name`: The name/identifier of the package to which this function belongs.
// /// - `name`: The name/identifier of the function.
// /// - `signature`: The function's signature (i.e., a list of data types (and thus the number) of arguments and its return type).
// /// - `range`: The range of the function in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a function entry with this name already exists.
// pub fn add_package_func_entry(this: &Rc<RefCell<SymbolTable>>, package_name: String, name: String, signature: (Vec<DataType>, DataType), range : TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.func.contains_key(&name) { return Err(SymbolTableError::DuplicateFunction{ name: name.clone(), existing: st.func.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STFuncEntry>> = Rc::new(RefCell::new(STFuncEntry {
// package : Some(package_name),
// signature : Some(signature),
// range,
// symbol_table : this.clone(),
// }));
// st.func.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Adds an STCLassEntry to the SymbolTable.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `name`: The name/identifier of the function.
// /// - `properties`: The map of property names to their respective data types for this class.
// /// - `methods`: The methods defined within this Class, mapped by name.
// /// - `range`: The range of the class in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a class entry with this name already exists.
// pub fn add_class_entry(this: &Rc<RefCell<SymbolTable>>, name: String, properties: HashMap<String, DataType>, methods: HashMap<String, Option<(Vec<DataType>, DataType)>>, range : TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.clss.contains_key(&name) { return Err(SymbolTableError::DuplicateClass{ name: name.clone(), existing: st.clss.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STClassEntry>> = Rc::new(RefCell::new(STClassEntry {
// props : properties,
// methods,
// range,
// symbol_table : this.clone(),
// }));
// st.clss.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Adds a function parameter (i.e., variable) to the SymbolTable.
// ///
// /// Its type needs to be deduced later during type analysis.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `func_name`: The name of the function for which this variable is a parameter.
// /// - `name`: The name of the variable.
// /// - `range`: The range of the variable in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a variable entry with this name already exists.
// pub fn add_param_entry(this: &Rc<RefCell<SymbolTable>>, func_name: String, name: String, range: TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.vars.contains_key(&name) { return Err(SymbolTableError::DuplicateParameter{ name: name.clone(), existing: st.vars.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STVarEntry>> = Rc::new(RefCell::new(STVarEntry {
// function : Some(func_name),
// data_type : None,
// range,
// symbol_table : this.clone(),
// }));
// st.vars.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Adds a fvariable to the SymbolTable.
// ///
// /// Its type needs to be deduced later during type analysis.
// ///
// /// # Arguments
// /// - `this`: A (smart-)pointer to the symboltable to add the new entry to.
// /// - `name`: The name of the variable.
// /// - `range`: The range of the variable in the original source text (for debugging).
// ///
// /// # Returns
// /// Nothing, but adds it to the internal list.
// ///
// /// # Errors
// /// This function errors if a variable entry with this name already exists.
// pub fn add_var_entry(this: &Rc<RefCell<SymbolTable>>, name: String, range: TextRange) -> Result<Rc<RefCell<SymbolTableEntry>>, SymbolTableError> {
// // Borrow ourselves
// let mut st: RefMut<SymbolTable> = this.borrow_mut();
// // Check if it already exists
// if st.vars.contains_key(&name) { return Err(SymbolTableError::DuplicateVariable{ name: name.clone(), existing: st.vars.get(&name).unwrap().borrow().range.clone(), got: range }); }
// // It doesn't, so add it
// let res: Rc<RefCell<STVarEntry>> = Rc::new(RefCell::new(STVarEntry {
// function : None,
// data_type : None,
// range,
// symbol_table : this.clone(),
// }));
// st.vars.insert(name, res.clone());
// // Done
// Ok(res)
// }
// /// Returns a reference to its entry if the given function exists in this symbol table or any of its parents.
// ///
// /// This function stops searching as soon as the first entry is found (walking up the tree), which allows shadowing of variables.
// ///
// /// # Generic parameters
// /// - `S`: The &str-like type of the `name`.
// ///
// /// # Arguments
// /// - `name`: The name/identifier of the function to search for.
// ///
// /// # Returns
// /// The STFuncEntry of this function if it existed, or else None.
// #[inline]
// pub fn get_func_entry<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<SymbolTableEntry>>> {
// // Get it, or if not found, try the parent (if any)
// match self.func.get(name.as_ref()) {
// Some(entry) => Some(entry.clone()),
// None => match &self.parent {
// Some(parent) => parent.borrow().get_func_entry(name),
// None => None,
// }
// }
// }
// /// Returns a reference to its entry if the given class exists in this symbol table or any of its parents.
// ///
// /// This function stops searching as soon as the first entry is found (walking up the tree), which allows shadowing of variables.
// ///
// /// # Generic parameters
// /// - `S`: The &str-like type of the `name`.
// ///
// /// # Arguments
// /// - `name`: The name/identifier of the class to search for.
// ///
// /// # Returns
// /// The STClassEntry of this class if it existed, or else None.
// #[inline]
// pub fn get_class_entry<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<SymbolTableEntry>>> {
// // Get it, or if not found, try the parent (if any)
// match self.clss.get(name.as_ref()) {
// Some(entry) => Some(entry.clone()),
// None => match &self.parent {
// Some(parent) => parent.borrow().get_class_entry(name),
// None => None,
// }
// }
// }
// /// Returns a reference to its entry if the given variable exists in this symbol table or any of its parents.
// ///
// /// This function stops searching as soon as the first entry is found (walking up the tree), which allows shadowing of variables.
// ///
// /// # Generic parameters
// /// - `S`: The &str-like type of the `name`.
// ///
// /// # Arguments
// /// - `name`: The name/identifier of the variable to search for.
// ///
// /// # Returns
// /// The STFuncEntry of this variable if it existed, or else None.
// #[inline]
// pub fn get_var_entry<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<SymbolTableEntry>>> {
// // Get it, or if not found, try the parent (if any)
// match self.vars.get(name.as_ref()) {
// Some(entry) => Some(entry.clone()),
// None => match &self.parent {
// Some(parent) => parent.borrow().get_var_entry(name),
// None => None,
// }
// }
// }
// }