1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
//  SYMBOLS.rs
//    by Lut99
//
//  Created:
//    18 Aug 2022, 15:24:54
//  Last edited:
//    12 Dec 2023, 17:13:11
//  Auto updated?
//    Yes
//
//  Description:
//!   Implements a traversal that builds symbol tables for the `brane-dsl`
//!   AST.
//

use std::cell::{Ref, RefCell, RefMut};
use std::collections::HashMap;
use std::rc::Rc;

use brane_dsl::ast::{Block, Expr, Identifier, Node, Program, Stmt};
use brane_dsl::data_type::{ClassSignature, FunctionSignature};
use brane_dsl::spec::MergeStrategy;
use brane_dsl::symbol_table::{ClassEntry, FunctionEntry, SymbolTableEntry, VarEntry};
use brane_dsl::{DataType, SymbolTable, TextRange};
use enum_debug::EnumDebug as _;
use log::trace;
use specifications::data::DataIndex;
use specifications::package::{PackageIndex, PackageInfo};
use specifications::version::Version;

use crate::errors::AstError;
pub use crate::errors::ResolveError as Error;
use crate::spec::{BuiltinClasses, BuiltinFunctions};
use crate::state::CompileState;


/***** TESTS *****/
#[cfg(test)]
pub mod tests {
    use brane_dsl::ParserOptions;
    use brane_shr::utilities::{create_data_index, create_package_index, test_on_dsl_files};
    use specifications::package::PackageIndex;

    use super::super::print::symbol_tables;
    use super::*;
    use crate::{CompileResult, CompileStage, compile_program_to};


    /// Tests the traversal by generating symbol tables for every file.
    #[test]
    fn test_resolve() {
        test_on_dsl_files("BraneScript", |path, code| {
            // Always print the header
            println!("{}", (0..80).map(|_| '-').collect::<String>());
            println!("File '{}' gave us:", path.display());

            // Load the package index
            let pindex: PackageIndex = create_package_index();
            let dindex: DataIndex = create_data_index();

            // Run up to this traversal
            let program: Program = match compile_program_to(code.as_bytes(), &pindex, &dindex, &ParserOptions::bscript(), CompileStage::Resolve) {
                CompileResult::Program(p, warns) => {
                    // Print warnings if any
                    for w in warns {
                        w.prettyprint(path.to_string_lossy(), &code);
                    }
                    p
                },
                CompileResult::Eof(err) => {
                    // Print the error
                    err.prettyprint(path.to_string_lossy(), &code);
                    panic!("Failed to resolve symbol tables (see output above)");
                },
                CompileResult::Err(errs) => {
                    // Print the errors
                    for e in errs {
                        e.prettyprint(path.to_string_lossy(), &code);
                    }
                    panic!("Failed to resolve symbol tables (see output above)");
                },

                _ => {
                    unreachable!();
                },
            };

            // Now print the symbol tables for prettyness
            symbol_tables::do_traversal(program, std::io::stdout()).unwrap();
            println!("{}\n\n", (0..80).map(|_| '-').collect::<String>());
        });
    }
}





/***** HELPER FUNCTIONS ******/
/// Defines the arguments of the given FuncDef in the given symbol table.
///
/// # Arguments
/// - `entry`: The FunctionEntry that defines most of the desired FuncDef.
/// - `params`: The Identifiers that define this function's parameters.
/// - `table`: The SymbolTable to define the function's arguments in.
/// - `errors`: A vector to collect any errors in that occur.
///
/// # Returns
/// Nothing, but does generate new entries in the given symbol table and updates the given entry accordingly.
///
/// # Errors
/// This function may error if the given symbol table already existed.
///
/// If such an error occurred, then it is added to the given `errors` list. Some arguments may be undefined in that case.
fn define_func(entry: &mut FunctionEntry, params: &mut [Identifier], symbol_table: &Rc<RefCell<SymbolTable>>, errors: &mut Vec<Error>) {
    // Iterate to add them
    {
        let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
        for p in params.iter_mut() {
            match st.add_var(VarEntry::from_param(&p.value, &entry.name, p.range().clone())) {
                Ok(e) => {
                    entry.params.push(e);
                },
                Err(err) => {
                    errors.push(Error::ParameterDefineError { func_name: entry.name.clone(), name: p.value.clone(), err, range: p.range().clone() });
                    continue;
                },
            };
        }
    }

    // Update the argument count in the function's symbol table entry
    entry.signature = FunctionSignature::new(vec![DataType::Any; params.len()], DataType::Any);

    // Done
}





/***** TRAVERSAL FUNCTIONS *****/
/// Attempts to resolve the symbol table for a given block.
///
/// # Arguments
/// - `state`: The CompileState that contains the TextRange offset to apply to all errors and such.
/// - `package_index`: The PackageIndex which we use to resolve external function calls.
/// - `data_index`: The DataIndex which we use to resolve external data assets.
/// - `block`: The Block to traverse.
/// - `parent`: The parent symbol table of the parent scope.
/// - `errors`: A list that we use to keep track of any errors that occur during this pass.
///
/// # Errors
/// This function may error if there were semantic problems while building the table for this statement (if any).
///
/// # Returns
/// Nothing, but does add entries to the symbol table and references them in nodes.
///
/// If an error occurred, then it is appended to the `errors` list and the function returns early.
fn pass_block(
    state: &CompileState,
    package_index: &PackageIndex,
    data_index: &DataIndex,
    block: &mut Block,
    parent: Option<Rc<RefCell<SymbolTable>>>,
    errors: &mut Vec<Error>,
) {
    // Set the parent for this block's symbol table
    {
        let mut st: RefMut<SymbolTable> = block.table.borrow_mut();
        st.parent = parent;
    }

    // Go over the statements and attempt to (further) populate this symbol table
    for s in block.stmts.iter_mut() {
        pass_stmt(state, package_index, data_index, s, &block.table, errors);
    }

    // The table should now be populated for this block
}

/// Attempts to resolve this statement in the given symbol table if it is a function or variable reference.
///
/// If this statement contains a block, that block will be resolved too.
///
/// # Arguments
/// - `state`: The CompileState that contains the TextRange offset to apply to all errors and such.
/// - `package_index`: The PackageIndex which we use to resolve external function calls.
/// - `data_index`: The DataIndex which we use to resolve external data assets.
/// - `stmt`: The Stmt to traverse.
/// - `symbol_table`: The SymbolTable to populate.
/// - `errors`: A list that we use to keep track of any errors that occur during this pass.
///
/// # Returns
/// Nothing, but does add entries to the symbol table and references them in nodes.
///
/// # Errors
/// This function may error if there were semantic problems while building the table for this statement (if any).
///
/// If an error occurred, then it is appended to the `errors` list and the function returns early.
fn pass_stmt(
    state: &CompileState,
    package_index: &PackageIndex,
    data_index: &DataIndex,
    stmt: &mut Stmt,
    symbol_table: &Rc<RefCell<SymbolTable>>,
    errors: &mut Vec<Error>,
) {
    // Match on the exact statement
    use Stmt::*;
    match stmt {
        Block { block } => {
            // Blocks require renewed evaluation
            pass_block(state, package_index, data_index, block, Some(symbol_table.clone()), errors);
        },

        Import { name, version, st_funcs, st_classes, attrs: _, range } => {
            // First: parse the version
            let semver: Version = match version.as_version() {
                Ok(version) => version,
                Err(err) => {
                    errors.push(Error::VersionParseError { err, range: version.range().clone() });
                    return;
                },
            };

            // Attempt to resolve this (name, version) pair in the package index.
            let info: &PackageInfo = match package_index.get(&name.value, if !semver.is_latest() { Some(&semver) } else { None }) {
                Some(info) => info,
                None => {
                    errors.push(Error::UnknownPackageError { name: name.value.clone(), version: semver, range: range.clone() });
                    return;
                },
            };

            // If it did, then we can generate global symbol table entries in this scope for all its functions and types
            let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
            let mut funcs = vec![];
            for (name, f) in info.functions.iter() {
                // Collect the types that make the signature for this function.
                let arg_names: Vec<String> = f.parameters.iter().map(|p| p.name.clone()).collect();
                let arg_types: Vec<DataType> = f.parameters.iter().map(|p| DataType::from(&p.data_type)).collect();
                let ret_type: DataType = DataType::from(&f.return_type);

                // Wrap it in a function entry and add it to the list
                match st.add_func(FunctionEntry::from_import(
                    name,
                    FunctionSignature::new(arg_types, ret_type),
                    &info.name,
                    info.version,
                    arg_names,
                    f.requirements.clone().unwrap_or_default(),
                    TextRange::none(),
                )) {
                    Ok(entry) => {
                        funcs.push(entry);
                    },
                    Err(err) => {
                        errors.push(Error::FunctionImportError { package_name: info.name.clone(), name: name.into(), err, range: range.clone() });
                        return;
                    },
                }
            }
            let mut classes = vec![];
            for (name, c) in info.types.iter() {
                // Create a map of property names to types.
                let properties: HashMap<String, DataType> = c.properties.iter().map(|p| (p.name.clone(), DataType::from(&p.data_type))).collect();

                // Construct a symbol table with it
                let c_symbol_table: Rc<RefCell<SymbolTable>> = {
                    let c_symbol_table: Rc<RefCell<SymbolTable>> = SymbolTable::new();
                    {
                        let mut cst: RefMut<SymbolTable> = c_symbol_table.borrow_mut();
                        for p in properties.iter() {
                            match cst.add_var(VarEntry::from_prop(p.0, p.1, name, range.clone())) {
                                Ok(_) => {},
                                Err(err) => {
                                    errors.push(Error::VariableDefineError { name: p.0.clone(), err, range: range.clone() });
                                    return;
                                },
                            }
                        }
                    }
                    c_symbol_table
                };

                // Insert it (plus an empty method map) as a ClassEntry
                match st.add_class(ClassEntry::from_import(
                    ClassSignature { name: name.clone() },
                    c_symbol_table,
                    &info.name,
                    info.version,
                    TextRange::none(),
                )) {
                    Ok(entry) => {
                        classes.push(entry);
                    },
                    Err(err) => {
                        errors.push(Error::ClassImportError { package_name: info.name.clone(), name: name.into(), err, range: range.clone() });
                        return;
                    },
                }
            }

            // As a final thing, update the entry reference in the import itself
            *st_funcs = Some(funcs);
            *st_classes = Some(classes);
        },
        FuncDef { ident, params, code, st_entry, attrs: _, range } => {
            // Prepare the entry
            let mut entry: FunctionEntry = FunctionEntry::from_def(&ident.value, range.clone());
            define_func(&mut entry, params, &code.table, errors);

            // We can then add the function definition to the given symbol table
            {
                let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
                match st.add_func(entry) {
                    Ok(entry) => {
                        *st_entry = Some(entry);
                    },
                    Err(err) => {
                        errors.push(Error::FunctionDefineError { name: ident.value.clone(), err, range: ident.range().clone() });
                        return;
                    },
                }
            }

            // Now go and populate the rest of its symbol table in the function body.
            pass_block(state, package_index, data_index, code, Some(symbol_table.clone()), errors);
        },
        ClassDef { ident, props, methods, st_entry, symbol_table: c_symbol_table, attrs: _, range } => {
            // First, we generate the class entry as complete as we can
            // 1. Prepare the class' symbol table
            {
                let mut cst: RefMut<SymbolTable> = c_symbol_table.borrow_mut();

                // Set the correct parent scope
                cst.parent = Some(symbol_table.clone());

                // Add each of the properties in this class
                let st: Ref<SymbolTable> = symbol_table.borrow();
                for p in props.iter_mut() {
                    // Check if the data type exists if it references another class
                    if let DataType::Class(c_name) = &p.data_type {
                        if st.get_class(c_name).is_none() {
                            errors.push(Error::UndefinedClass { ident: c_name.clone(), range: p.range().clone() });
                            return;
                        }
                    }

                    // Generate an entry for it
                    match cst.add_var(VarEntry::from_prop(&p.name.value, &p.data_type, &ident.value, p.range().clone())) {
                        Ok(entry) => {
                            p.st_entry = Some(entry);
                        },
                        Err(err) => {
                            errors.push(Error::VariableDefineError { name: ident.value.clone(), err, range: range.clone() });
                            return;
                        },
                    }
                }

                // Add definitions for each of its functions
                for m in methods.iter_mut() {
                    if let Stmt::FuncDef { ident: m_ident, params: m_params, code: m_code, st_entry: m_st_entry, range: m_range, .. } = &mut **m {
                        // First, check if its name does not overlap with a property (i.e., we want one namespace for a class)
                        if let Some(p) = cst.get_var(&m_ident.value) {
                            errors.push(Error::DuplicateMethodAndProperty {
                                c_name: ident.value.clone(),
                                name: m_ident.value.clone(),
                                new_range: m_ident.range.clone(),
                                existing_range: p.borrow().range.clone(),
                            });
                            return;
                        }

                        // Then, check if it has a 'self' parameter
                        if let Some((i, _)) = m_params.iter().enumerate().find(|(_, p)| &p.value == "self") {
                            if i != 0 {
                                errors.push(Error::IllegalSelf {
                                    c_name: ident.value.clone(),
                                    name:   m_ident.value.clone(),
                                    arg:    i,
                                    range:  m_ident.range.clone(),
                                });
                            }
                        } else {
                            errors.push(Error::MissingSelf {
                                c_name: ident.value.clone(),
                                name:   m_ident.value.clone(),
                                range:  m_ident.range.clone(),
                            });
                        }

                        // If it passes those checks, we create an entry for it
                        let mut entry: FunctionEntry = FunctionEntry::from_method(m_ident.value.clone(), &ident.value, m_range.clone());
                        define_func(&mut entry, m_params, &m_code.table, errors);
                        m_code.table.borrow_mut().parent = Some(symbol_table.clone());

                        // Add it to the class' table
                        match cst.add_func(entry) {
                            Ok(entry) => {
                                *m_st_entry = Some(entry);
                            },
                            Err(err) => {
                                errors.push(Error::FunctionDefineError { name: m_ident.value.clone(), err, range: m_range.clone() });
                                return;
                            },
                        }
                    } else {
                        panic!("Class method stmt is not a FuncDef");
                    }
                }
            }

            // 2. Create a proper class entry with that table
            {
                let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
                match st.add_class(ClassEntry::from_def(ClassSignature::new(&ident.value), c_symbol_table.clone(), range.clone())) {
                    Ok(entry) => {
                        *st_entry = Some(entry);
                    },
                    Err(err) => {
                        errors.push(Error::ClassDefineError { name: ident.value.clone(), err, range: range.clone() });
                        return;
                    },
                }
            }

            // 3. Recurse into the function bodies to resolve there
            for m in methods.iter_mut() {
                if let Stmt::FuncDef { code: m_code, .. } = &mut **m {
                    for s in &mut m_code.stmts {
                        pass_stmt(state, package_index, data_index, s, &m_code.table, errors);
                    }
                } else {
                    unreachable!();
                }
            }

            // Done; we added a full class entry and recursed
        },
        Return { expr, data_type: _, output: _, attrs: _, range: _ } => {
            // Traverse the expression to resolve any references (by the time we reach it, the symbol table should already be sufficiently populated)
            if let Some(expr) = expr {
                pass_expr(state, data_index, expr, symbol_table, errors);
            }
        },

        If { cond, consequent, alternative, attrs: _, range: _ } => {
            // Recurse into the condition
            pass_expr(state, data_index, cond, symbol_table, errors);

            // Recurse into the codeblocks
            pass_block(state, package_index, data_index, consequent, Some(symbol_table.clone()), errors);
            if let Some(alternative) = alternative {
                pass_block(state, package_index, data_index, alternative, Some(symbol_table.clone()), errors);
            }
        },
        For { initializer, condition, increment, consequent, attrs: _, range: _ } => {
            // Set the parent for the nested block's symbol table
            {
                let mut st: RefMut<SymbolTable> = consequent.table.borrow_mut();
                st.parent = Some(symbol_table.clone());
            }

            // Recurse into the three for-parts first
            pass_stmt(state, package_index, data_index, initializer, &consequent.table, errors);
            pass_expr(state, data_index, condition, &consequent.table, errors);
            pass_stmt(state, package_index, data_index, increment, &consequent.table, errors);

            // Recurse into the block
            for s in consequent.stmts.iter_mut() {
                pass_stmt(state, package_index, data_index, s, &consequent.table, errors);
            }
        },
        While { condition, consequent, attrs: _, range: _ } => {
            // Recurse into the while-part first
            pass_expr(state, data_index, condition, symbol_table, errors);
            // Recurse into the block
            pass_block(state, package_index, data_index, consequent, Some(symbol_table.clone()), errors);
        },
        Parallel { result, blocks, merge, st_entry, attrs: _, range } => {
            // First, very silly, but double-check the merge is parseable
            if let Some(merge) = merge {
                if let MergeStrategy::None = MergeStrategy::from(&merge.value) {
                    errors.push(Error::UnknownMergeStrategy { raw: merge.value.clone(), range: merge.range.clone() });
                }
            }

            // Now recurse into the codeblocks to resolve their references too
            for b in blocks {
                pass_block(state, package_index, data_index, b, Some(symbol_table.clone()), errors);
            }

            // If present, declare the result as last
            if let Some(result) = result {
                // Attempt to declare the identifier
                let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
                match st.add_var(VarEntry::from_def(&result.value, range.clone())) {
                    Ok(entry) => {
                        *st_entry = Some(entry);
                    },
                    Err(err) => {
                        errors.push(Error::VariableDefineError { name: result.value.clone(), err, range: result.range().clone() });
                    },
                }
            }
        },

        LetAssign { name, value, st_entry, attrs: _, range } => {
            // Recursestate,  into the expression to resolve any reference there
            pass_expr(state, data_index, value, symbol_table, errors);

            // Attempt to declare the identifier
            let mut st: RefMut<SymbolTable> = symbol_table.borrow_mut();
            match st.add_var(VarEntry::from_def(&name.value, range.clone())) {
                Ok(entry) => {
                    *st_entry = Some(entry);
                },
                Err(err) => {
                    errors.push(Error::VariableDefineError { name: name.value.clone(), err, range: name.range().clone() });
                },
            }
        },
        Assign { name, value, st_entry, attrs: _, range: _ } => {
            // Recurse into the expression to resolve any reference there
            pass_expr(state, data_index, value, symbol_table, errors);

            // Attempt to resolve the identifier
            let st: Ref<SymbolTable> = symbol_table.borrow();
            match st.get_var(&name.value) {
                Some(entry) => {
                    *st_entry = Some(entry);
                },
                None => {
                    errors.push(Error::UndefinedVariable { ident: name.value.clone(), range: name.range().clone() });
                },
            }
        },
        Expr { expr, data_type: _, attrs: _, range: _ } => {
            // Simply recurse
            pass_expr(state, data_index, expr, symbol_table, errors);
        },

        // We ignore the rest
        Empty {} => {},
        Attribute(_) | AttributeInner(_) => panic!("Encountered {:?} in resolve traversal", stmt.variant()),
    }

    // We're done here
}

/// Attempts to resolve this expression by linking variable (or other) references to already defined values in the given symbol table and its parents.
///
/// # Arguments
/// - `state`: The CompileState that contains the TextRange offset to apply to all errors and such.
/// - `data_index`: The DataIndex which we use to resolve external data assets.
/// - `expr`: The Expr to traverse.
/// - `symbol_table`: The SymbolTable to check reference in.
/// - `errors`: A list that we use to keep track of any errors that occur during this pass.
///
/// # Returns
/// Nothing, but does reference symbol table entries in nodes.
///
/// # Errors
/// This function may error if there were semantic problems while checking the table for this statement (if any).
///
/// If an error occurred, then it is appended to the `errors` list and the function returns early.
fn pass_expr(state: &CompileState, data_index: &DataIndex, expr: &mut Expr, symbol_table: &Rc<RefCell<SymbolTable>>, errors: &mut Vec<Error>) {
    // Match on the exact expression
    use Expr::*;
    match expr {
        Cast { expr, target: _, range: _ } => {
            pass_expr(state, data_index, expr, symbol_table, errors);
        },

        Call { expr, args, st_entry: _, locations: _, input: _, result: _, metadata: _, range: _ } => {
            // Simply recurse the called expression
            pass_expr(state, data_index, expr, symbol_table, errors);
            // If it's an identifier, set its entry to which function it is referring
            if let brane_dsl::ast::Expr::Identifier { name, st_entry, .. } = &mut **expr {
                // Search the name
                let st: Ref<SymbolTable> = symbol_table.borrow();
                match st.get_func(&name.value) {
                    Some(entry) => {
                        *st_entry = Some(entry);
                    },
                    None => {
                        errors.push(Error::UndefinedFunction { ident: name.value.clone(), range: name.range.clone() });
                        return;
                    },
                }

                // Assertion that is at the incorrect place but jeeeeeez this sucks to place anywhere; if this is a commit, is the name a literal string?
                if name.value == BuiltinFunctions::CommitResult.name() {
                    if let Some(first_arg) = args.iter().next() {
                        if !matches!(&**first_arg, Expr::Literal { literal: brane_dsl::ast::Literal::String { .. } }) {
                            errors.push(Error::CommitResultIncorrectExpr { range: first_arg.range().clone() });
                        }
                    }
                }
            }

            // Then do the arguments
            for a in args {
                pass_expr(state, data_index, a, symbol_table, errors);
            }
        },
        Array { values, data_type: _, range: _ } => {
            // Simply recurse
            for v in values {
                pass_expr(state, data_index, v, symbol_table, errors);
            }
        },
        ArrayIndex { array, index, data_type: _, range: _ } => {
            // Simply recurse
            pass_expr(state, data_index, array, symbol_table, errors);
            pass_expr(state, data_index, index, symbol_table, errors);
        },
        Pattern { exprs, range: _ } => {
            // Simply recurse
            for e in exprs {
                pass_expr(state, data_index, e, symbol_table, errors);
            }
        },

        UnaOp { op: _, expr, range: _ } => {
            // Simply recurse
            pass_expr(state, data_index, expr, symbol_table, errors);
        },
        BinOp { op: _, lhs, rhs, range: _ } => {
            // Simply recurse
            pass_expr(state, data_index, lhs, symbol_table, errors);
            pass_expr(state, data_index, rhs, symbol_table, errors);
        },
        Proj { lhs, rhs, st_entry, range: _ } => {
            // By design, the lhs is only Expr::VarRef or Expr::Proj
            // The rhs is only Expr::Identifier

            // Recurse into the left-hand side first
            pass_expr(state, data_index, lhs, symbol_table, errors);
            // Then the righthand-side (not necessary, but just in case we ever do need recursion for identifiers)
            pass_expr(state, data_index, rhs, symbol_table, errors);

            // Get the rhs identifier
            let rhs_ident: &brane_dsl::ast::Identifier = if let Expr::Identifier { name, .. } = &**rhs {
                name
            } else {
                panic!("Encountered non-Identifier expression on righthand-side of projection expression");
            };

            // With the type evaluated, get the symbol table that contains the class' fields referenced by the LHS
            let (var_name, c_entry): (String, Rc<RefCell<ClassEntry>>) = {
                // Get a borrow to the underlying variable entry first
                let var_entry: Rc<RefCell<VarEntry>> = match &**lhs {
                    Expr::Proj { st_entry, .. } => {
                        // Get the class symbol table as simply the parent table of the variable entry
                        if let Some(entry) = st_entry.as_ref() {
                            match entry {
                                SymbolTableEntry::VarEntry(v) => v.clone(),
                                SymbolTableEntry::FunctionEntry(f) => {
                                    let entry: Ref<FunctionEntry> = f.borrow();
                                    errors.push(Error::NonClassProjection {
                                        name:  rhs_ident.value.clone(),
                                        got:   DataType::Function(Box::new(entry.signature.clone())),
                                        range: lhs.range().clone(),
                                    });
                                    return;
                                },
                                _ => {
                                    panic!("Got non-Var, non-Method SymbolTableEntry in a projection");
                                },
                            }
                        } else {
                            // Otherwise, the LHS was not resolveable at this moment; try again later
                            trace!("Projection LHS not yet resolvable");
                            return;
                        }
                    },
                    Expr::VarRef { name, st_entry, .. } => {
                        // If the VarRef is not given, then something went wrong (e.g., unknown argument)
                        if st_entry.is_none() {
                            trace!("No entry set for '{}'", name.value);
                            return;
                        }

                        // Always a variable entry
                        trace!(
                            "Entry set for '{}' (pointing to '{}' ({}))",
                            name.value,
                            st_entry.as_ref().unwrap().borrow().name,
                            st_entry.as_ref().unwrap().borrow().data_type
                        );
                        st_entry.as_ref().unwrap().clone()
                    },

                    _ => {
                        panic!("Got non-Proj, non-VarRef expression on lefthand-side of projection expression");
                    },
                };

                // Get the type behind that entry as a ClassType
                let entry: Ref<VarEntry> = var_entry.borrow();
                let c_name: &str = match &entry.data_type {
                    DataType::Class(c_name) => c_name,
                    // For Any, we have no choice but to assume it's fine and leave it until runtime
                    DataType::Any => {
                        return;
                    },
                    entry_type => {
                        errors.push(Error::NonClassProjection {
                            name:  rhs_ident.value.clone(),
                            got:   entry_type.clone(),
                            range: lhs.range().clone(),
                        });
                        return;
                    },
                };

                // Attempt to resolve that name in the symbol table
                let st: Ref<SymbolTable> = symbol_table.borrow();
                (entry.name.clone(), st.get_class(c_name).unwrap())
            };

            // After that whole ordeal, we can now see if the rhs identifier is actually a field in the class
            let ce: Ref<ClassEntry> = c_entry.borrow();
            let cst: Ref<SymbolTable> = ce.symbol_table.borrow();
            if let Some(f_entry) = cst.get(&rhs_ident.value) {
                // It's a field! Link the projection operator to it.
                trace!("Projection of {} onto {} points to class {}", rhs_ident.value, var_name, match &f_entry {
                    SymbolTableEntry::FunctionEntry(f) => format!("method '{}'", f.borrow().name),
                    SymbolTableEntry::ClassEntry(c) => format!("class '{}'", c.borrow().signature.name),
                    SymbolTableEntry::VarEntry(v) => format!("property '{}' ({})", v.borrow().name, v.borrow().data_type),
                });
                *st_entry = Some(f_entry);
            } else {
                errors.push(Error::UnknownField {
                    class_name: ce.signature.name.clone(),
                    name: rhs_ident.value.clone(),
                    range: rhs_ident.range.clone(),
                });
            }
        },

        Instance { name, properties, st_entry, range: _ } => {
            // First, attempt to resolve the class name
            {
                let st: Ref<SymbolTable> = symbol_table.borrow();
                match st.get_class(&name.value) {
                    Some(entry) => {
                        *st_entry = Some(entry);
                    },
                    None => {
                        errors.push(Error::UndefinedClass { ident: name.value.clone(), range: name.range().clone() });
                        return;
                    },
                }
            }

            // Next, iterate over the properties to resolve those expressions
            let entry: Ref<ClassEntry> = st_entry.as_ref().unwrap().borrow();
            for p in properties.iter_mut() {
                // But first, double-check this property is actually present in the type (since this type resolving does not require extra type checking)
                if entry.symbol_table.borrow().get_var(&p.name.value).is_none() {
                    errors.push(Error::UnknownField { class_name: name.value.clone(), name: p.name.value.clone(), range: p.name.range().clone() });
                    return;
                }

                // Now traverse
                pass_expr(state, data_index, &mut p.value, symbol_table, errors);
            }

            // Finally, check if this dataset exists
            if entry.signature.name == BuiltinClasses::Data.name() {
                // Get the identifier stored within
                let name: &Expr = properties
                    .iter()
                    .find_map(|p| if &p.name.value == "name" { Some(&p.value) } else { None })
                    .expect("Builtin class Data has no field 'name' (seems like that's not been properly updated)");
                let sname: &str = match name {
                    Literal { literal: brane_dsl::ast::Literal::String { value, .. } } => value,
                    name => {
                        errors.push(Error::DataIncorrectExpr { range: name.range().clone() });
                        return;
                    },
                };

                // Attempt to find it in the data index
                // let info: &DataInfo = match data_index.get(sname) {
                //     Some(info) => info,
                //     None       => {
                //         errors.push(Error::UnknownDataError{ name: sname.into(), range: name.range().clone() });
                //         return;
                //     }
                // };
                if data_index.get(sname).is_none() {
                    errors.push(Error::UnknownDataError { name: sname.into(), range: name.range().clone() });
                }

                // With the dataset resolved, we rest easy
            }
        },
        Identifier { name, st_entry: _ } => {
            // Update the expr's range
            name.range.start.line += state.offset;
            name.range.end.line += state.offset;
        },
        VarRef { name, st_entry } => {
            // Update the expr's range
            name.range.start.line += state.offset;
            name.range.end.line += state.offset;

            // Resolve the variable reference as a classic, well, variable
            let st: Ref<SymbolTable> = symbol_table.borrow();
            match st.get_var(&name.value) {
                Some(entry) => {
                    *st_entry = Some(entry);
                },
                None => {
                    errors.push(Error::UndefinedVariable { ident: name.value.clone(), range: name.range.clone() });
                },
            }
        },

        // The rest is irrelevant for resolving the symbol tables
        Literal { literal: _ } | Empty {} => {},
    }

    // We're done here
}





/***** LIBRARY *****/
/// Builds symbol tables for the given `brane-dsl` AST.
///
/// This effectively resolves variable references.
///
/// # Arguments
/// - `state`: The CompileState that we can use to remember definitions in between runs.
/// - `package_index`: The PackageIndex which we use to resolve external function calls.
/// - `data_index`: The DataIndex which we use to resolve external data assets.
/// - `root`: The root node of the tree on which this compiler pass will be done.
///
/// # Returns
/// The same nodes as went in, but now with non-empty symbol tables.
///
/// # Errors
/// TThis pass may throw `AstError::ResolveError`s if the user made mistakes with their variable references.
pub fn do_traversal(state: &mut CompileState, package_index: &PackageIndex, data_index: &DataIndex, root: Program) -> Result<Program, Vec<AstError>> {
    let mut root = root;

    // Inject the state into the global symbol table
    {
        let mut st: RefMut<SymbolTable> = root.block.table.borrow_mut();
        state.table.inject(&mut st);
    }

    // Iterate over all statements to build their symbol tables (if relevant)
    let mut errors: Vec<Error> = vec![];
    pass_block(state, package_index, data_index, &mut root.block, None, &mut errors);

    // Done
    if errors.is_empty() { Ok(root) } else { Err(errors.into_iter().map(AstError::from).collect()) }
}