juniper/types/base.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
use indexmap::IndexMap;
use crate::{
ast::{Directive, FromInputValue, InputValue, Selection},
executor::{ExecutionResult, Executor, Registry, Variables},
parser::Spanning,
schema::meta::{Argument, MetaType},
value::{DefaultScalarValue, Object, ScalarValue, Value},
FieldResult, GraphQLEnum, IntoFieldError,
};
/// GraphQL type kind
///
/// The GraphQL specification defines a number of type kinds - the meta type\
/// of a type.
#[derive(Clone, Eq, PartialEq, Debug, GraphQLEnum)]
#[graphql(name = "__TypeKind", internal)]
pub enum TypeKind {
/// ## Scalar types
///
/// Scalar types appear as the leaf nodes of GraphQL queries. Strings,\
/// numbers, and booleans are the built in types, and while it's possible\
/// to define your own, it's relatively uncommon.
Scalar,
/// ## Object types
///
/// The most common type to be implemented by users. Objects have fields\
/// and can implement interfaces.
Object,
/// ## Interface types
///
/// Interface types are used to represent overlapping fields between\
/// multiple types, and can be queried for their concrete type.
Interface,
/// ## Union types
///
/// Unions are similar to interfaces but can not contain any fields on\
/// their own.
Union,
/// ## Enum types
///
/// Like scalars, enum types appear as the leaf nodes of GraphQL queries.
Enum,
/// ## Input objects
///
/// Represents complex values provided in queries _into_ the system.
InputObject,
/// ## List types
///
/// Represent lists of other types. This library provides implementations\
/// for vectors and slices, but other Rust types can be extended to serve\
/// as GraphQL lists.
List,
/// ## Non-null types
///
/// In GraphQL, nullable types are the default. By putting a `!` after a\
/// type, it becomes non-nullable.
NonNull,
}
/// Field argument container
#[derive(Debug)]
pub struct Arguments<'a, S = DefaultScalarValue> {
args: Option<IndexMap<&'a str, Spanning<InputValue<S>>>>,
}
impl<'a, S> Arguments<'a, S> {
#[doc(hidden)]
pub fn new(
mut args: Option<IndexMap<&'a str, Spanning<InputValue<S>>>>,
meta_args: &'a Option<Vec<Argument<S>>>,
) -> Self
where
S: Clone,
{
if meta_args.is_some() && args.is_none() {
args = Some(IndexMap::new());
}
if let (Some(args), Some(meta_args)) = (&mut args, meta_args) {
for arg in meta_args {
let arg_name = arg.name.as_str();
if args.get(arg_name).is_none() {
if let Some(val) = arg.default_value.as_ref() {
args.insert(arg_name, Spanning::unlocated(val.clone()));
}
}
}
}
Self { args }
}
/// Gets an argument by the given `name` and converts it into the desired
/// type.
///
/// If the argument is found, or a default argument has been provided, the
/// given [`InputValue`] will be converted into the type `T`.
///
/// Returns [`None`] if an argument with such `name` is not present.
///
/// # Errors
///
/// If the [`FromInputValue`] conversion fails.
pub fn get<T>(&self, name: &str) -> FieldResult<Option<T>, S>
where
T: FromInputValue<S>,
T::Error: IntoFieldError<S>,
{
self.args
.as_ref()
.and_then(|args| args.get(name))
.map(|spanning| &spanning.item)
.map(InputValue::convert)
.transpose()
.map_err(IntoFieldError::into_field_error)
}
/// Gets a direct reference to the [`Spanning`] argument [`InputValue`].
pub fn get_input_value(&self, name: &str) -> Option<&Spanning<InputValue<S>>> {
self.args.as_ref().and_then(|args| args.get(name))
}
}
/// Primary trait used to resolve GraphQL values.
///
/// All the convenience macros ultimately expand into an implementation of this trait for the given
/// type. The macros remove duplicated definitions of fields and arguments, and add type checks on
/// all resolving functions automatically. This can all be done manually too.
///
/// [`GraphQLValue`] provides _some_ convenience methods for you, in the form of optional trait
/// methods. The `type_name` method is mandatory, but other than that, it depends on what type
/// you're exposing:
/// - [Scalars][4], [enums][5], [lists][6] and [non-null wrappers][7] only require `resolve`.
/// - [Interfaces][1] and [objects][3] require `resolve_field` _or_ `resolve` if you want to
/// implement a custom resolution logic (probably not).
/// - [Interfaces][1] and [unions][2] require `resolve_into_type` and `concrete_type_name`.
/// - [Input objects][8] do not require anything.
///
/// # Object safety
///
/// This trait is [object safe][11], therefore may be turned into a [trait object][12] and used for
/// resolving GraphQL values even when a concrete Rust type is erased.
///
/// # Example
///
/// This trait is intended to be used in a conjunction with a [`GraphQLType`] trait. See the example
/// in the documentation of a [`GraphQLType`] trait.
///
/// [1]: https://spec.graphql.org/October2021#sec-Interfaces
/// [2]: https://spec.graphql.org/October2021#sec-Unions
/// [3]: https://spec.graphql.org/October2021#sec-Objects
/// [4]: https://spec.graphql.org/October2021#sec-Scalars
/// [5]: https://spec.graphql.org/October2021#sec-Enums
/// [6]: https://spec.graphql.org/October2021#sec-List
/// [7]: https://spec.graphql.org/October2021#sec-Non-Null
/// [8]: https://spec.graphql.org/October2021#sec-Input-Objects
/// [11]: https://doc.rust-lang.org/reference/items/traits.html#object-safety
/// [12]: https://doc.rust-lang.org/reference/types/trait-object.html
pub trait GraphQLValue<S = DefaultScalarValue>
where
S: ScalarValue,
{
/// Context type for this [`GraphQLValue`].
///
/// It's threaded through a query execution to all affected nodes, and can be used to hold
/// common data, e.g. database connections or request session information.
type Context;
/// Type that may carry additional schema information for this [`GraphQLValue`].
///
/// It can be used to implement a schema that is partly dynamic, meaning that it can use
/// information that is not known at compile time, for instance by reading it from a
/// configuration file at startup.
type TypeInfo;
/// Returns name of the [`GraphQLType`] exposed by this [`GraphQLValue`].
///
/// This function will be called multiple times during a query execution. It must _not_ perform
/// any calculation and _always_ return the same value.
///
/// Usually, it should just call a [`GraphQLType::name`] inside.
fn type_name<'i>(&self, info: &'i Self::TypeInfo) -> Option<&'i str>;
/// Resolves the value of a single field on this [`GraphQLValue`].
///
/// The `arguments` object contains all the specified arguments, with default values being
/// substituted for the ones not provided by the query.
///
/// The `executor` can be used to drive selections into sub-[objects][3].
///
/// # Panics
///
/// The default implementation panics.
///
/// [3]: https://spec.graphql.org/October2021#sec-Objects
fn resolve_field(
&self,
_info: &Self::TypeInfo,
_field_name: &str,
_arguments: &Arguments<S>,
_executor: &Executor<Self::Context, S>,
) -> ExecutionResult<S> {
panic!("GraphQLValue::resolve_field() must be implemented by objects and interfaces");
}
/// Resolves this [`GraphQLValue`] (being an [interface][1] or an [union][2]) into a concrete
/// downstream [object][3] type.
///
/// Tries to resolve this [`GraphQLValue`] into the provided `type_name`. If the type matches,
/// then passes the instance along to [`Executor::resolve`].
///
/// # Panics
///
/// The default implementation panics.
///
/// [1]: https://spec.graphql.org/October2021#sec-Interfaces
/// [2]: https://spec.graphql.org/October2021#sec-Unions
/// [3]: https://spec.graphql.org/October2021#sec-Objects
fn resolve_into_type(
&self,
info: &Self::TypeInfo,
type_name: &str,
selection_set: Option<&[Selection<S>]>,
executor: &Executor<Self::Context, S>,
) -> ExecutionResult<S> {
if self.type_name(info).unwrap() == type_name {
self.resolve(info, selection_set, executor)
} else {
panic!(
"GraphQLValue::resolve_into_type() must be implemented by unions and interfaces"
);
}
}
/// Returns the concrete [`GraphQLType`] name for this [`GraphQLValue`] being an [interface][1],
/// an [union][2] or an [object][3].
///
/// # Panics
///
/// The default implementation panics.
///
/// [1]: https://spec.graphql.org/October2021#sec-Interfaces
/// [2]: https://spec.graphql.org/October2021#sec-Unions
/// [3]: https://spec.graphql.org/October2021#sec-Objects
#[allow(unused_variables)]
fn concrete_type_name(&self, context: &Self::Context, info: &Self::TypeInfo) -> String {
panic!(
"GraphQLValue::concrete_type_name() must be implemented by unions, interfaces \
and objects",
);
}
/// Resolves the provided `selection_set` against this [`GraphQLValue`].
///
/// For non-[object][3] types, the `selection_set` will be [`None`] and the value should simply
/// be returned.
///
/// For [objects][3], all fields in the `selection_set` should be resolved. The default
/// implementation uses [`GraphQLValue::resolve_field`] to resolve all fields, including those
/// through a fragment expansion.
///
/// Since the [GraphQL spec specifies][0] that errors during field processing should result in
/// a null-value, this might return `Ok(Null)` in case of a failure. Errors are recorded
/// internally.
///
/// # Panics
///
/// The default implementation panics, if `selection_set` is [`None`].
///
/// [0]: https://spec.graphql.org/October2021#sec-Errors-and-Non-Nullability
/// [3]: https://spec.graphql.org/October2021#sec-Objects
fn resolve(
&self,
info: &Self::TypeInfo,
selection_set: Option<&[Selection<S>]>,
executor: &Executor<Self::Context, S>,
) -> ExecutionResult<S> {
if let Some(sel) = selection_set {
let mut res = Object::with_capacity(sel.len());
Ok(
if resolve_selection_set_into(self, info, sel, executor, &mut res) {
Value::Object(res)
} else {
Value::null()
},
)
} else {
panic!("GraphQLValue::resolve() must be implemented by non-object output types");
}
}
}
/// Primary trait used to expose Rust types in a GraphQL schema.
///
/// All of the convenience macros ultimately expand into an implementation of
/// this trait for the given type. This can all be done manually.
///
/// # Example
///
/// Manually deriving an [object][3] is straightforward, but tedious. This is the equivalent of the
/// `User` object as shown in the example in the documentation root:
/// ```
/// # use std::collections::HashMap;
/// use juniper::{
/// meta::MetaType, Arguments, Context, DefaultScalarValue, Executor, ExecutionResult,
/// FieldResult, GraphQLType, GraphQLValue, Registry,
/// };
///
/// #[derive(Debug)]
/// struct Database { users: HashMap<String, User> }
/// impl Context for Database {}
///
/// #[derive(Debug)]
/// struct User { id: String, name: String, friend_ids: Vec<String> }
///
/// impl GraphQLType<DefaultScalarValue> for User {
/// fn name(_: &()) -> Option<&'static str> {
/// Some("User")
/// }
///
/// fn meta<'r>(_: &(), registry: &mut Registry<'r>) -> MetaType<'r>
/// where DefaultScalarValue: 'r,
/// {
/// // First, we need to define all fields and their types on this type.
/// //
/// // If we need arguments, want to implement interfaces, or want to add documentation
/// // strings, we can do it here.
/// let fields = &[
/// registry.field::<&String>("id", &()),
/// registry.field::<&String>("name", &()),
/// registry.field::<Vec<&User>>("friends", &()),
/// ];
/// registry.build_object_type::<User>(&(), fields).into_meta()
/// }
/// }
///
/// impl GraphQLValue<DefaultScalarValue> for User {
/// type Context = Database;
/// type TypeInfo = ();
///
/// fn type_name(&self, _: &()) -> Option<&'static str> {
/// <User as GraphQLType>::name(&())
/// }
///
/// fn resolve_field(
/// &self,
/// info: &(),
/// field_name: &str,
/// args: &Arguments,
/// executor: &Executor<Database>
/// ) -> ExecutionResult
/// {
/// // Next, we need to match the queried field name. All arms of this match statement
/// // return `ExecutionResult`, which makes it hard to statically verify that the type you
/// // pass on to `executor.resolve*` actually matches the one that you defined in `meta()`
/// // above.
/// let database = executor.context();
/// match field_name {
/// // Because scalars are defined with another `Context` associated type, you must use
/// // `resolve_with_ctx` here to make the `executor` perform automatic type conversion
/// // of its argument.
/// "id" => executor.resolve_with_ctx(info, &self.id),
/// "name" => executor.resolve_with_ctx(info, &self.name),
///
/// // You pass a vector of `User` objects to `executor.resolve`, and it will determine
/// // which fields of the sub-objects to actually resolve based on the query.
/// // The `executor` instance keeps track of its current position in the query.
/// "friends" => executor.resolve(info,
/// &self.friend_ids.iter()
/// .filter_map(|id| database.users.get(id))
/// .collect::<Vec<_>>()
/// ),
///
/// // We can only reach this panic in two cases: either a mismatch between the defined
/// // schema in `meta()` above, or a validation failed because of a this library bug.
/// //
/// // In either of those two cases, the only reasonable way out is to panic the thread.
/// _ => panic!("Field {field_name} not found on type User"),
/// }
/// }
/// }
/// ```
///
/// [3]: https://spec.graphql.org/October2021#sec-Objects
pub trait GraphQLType<S = DefaultScalarValue>: GraphQLValue<S>
where
S: ScalarValue,
{
/// Returns name of this [`GraphQLType`] to expose.
///
/// This function will be called multiple times during schema construction. It must _not_
/// perform any calculation and _always_ return the same value.
fn name(info: &Self::TypeInfo) -> Option<&str>;
/// Returns [`MetaType`] representing this [`GraphQLType`].
fn meta<'r>(info: &Self::TypeInfo, registry: &mut Registry<'r, S>) -> MetaType<'r, S>
where
S: 'r;
}
/// Resolver logic for queries'/mutations' selection set.
/// Calls appropriate resolver method for each field or fragment found
/// and then merges returned values into `result` or pushes errors to
/// field's/fragment's sub executor.
///
/// Returns false if any errors occurred and true otherwise.
pub(crate) fn resolve_selection_set_into<T, S>(
instance: &T,
info: &T::TypeInfo,
selection_set: &[Selection<S>],
executor: &Executor<T::Context, S>,
result: &mut Object<S>,
) -> bool
where
T: GraphQLValue<S> + ?Sized,
S: ScalarValue,
{
let meta_type = executor
.schema()
.concrete_type_by_name(
instance
.type_name(info)
.expect("Resolving named type's selection set")
.as_ref(),
)
.expect("Type not found in schema");
for selection in selection_set {
match *selection {
Selection::Field(Spanning {
item: ref f,
ref span,
}) => {
if is_excluded(&f.directives, executor.variables()) {
continue;
}
let response_name = f.alias.as_ref().unwrap_or(&f.name).item;
if f.name.item == "__typename" {
result.add_field(
response_name,
Value::scalar(instance.concrete_type_name(executor.context(), info)),
);
continue;
}
let meta_field = meta_type.field_by_name(f.name.item).unwrap_or_else(|| {
panic!(
"Field {} not found on type {:?}",
f.name.item,
meta_type.name(),
)
});
let exec_vars = executor.variables();
let sub_exec = executor.field_sub_executor(
response_name,
f.name.item,
span.start,
f.selection_set.as_ref().map(|v| &v[..]),
);
let field_result = instance.resolve_field(
info,
f.name.item,
&Arguments::new(
f.arguments.as_ref().map(|m| {
m.item
.iter()
.filter_map(|(k, v)| {
let val = v.item.clone().into_const(exec_vars)?;
Some((k.item, Spanning::new(v.span, val)))
})
.collect()
}),
&meta_field.arguments,
),
&sub_exec,
);
match field_result {
Ok(Value::Null) if meta_field.field_type.is_non_null() => return false,
Ok(v) => merge_key_into(result, response_name, v),
Err(e) => {
sub_exec.push_error_at(e, span.start);
if meta_field.field_type.is_non_null() {
return false;
}
result.add_field(response_name, Value::null());
}
}
}
Selection::FragmentSpread(Spanning {
item: ref spread,
span,
}) => {
if is_excluded(&spread.directives, executor.variables()) {
continue;
}
let fragment = &executor
.fragment_by_name(spread.name.item)
.expect("Fragment could not be found");
let sub_exec = executor.type_sub_executor(
Some(fragment.type_condition.item),
Some(&fragment.selection_set[..]),
);
let concrete_type_name = instance.concrete_type_name(sub_exec.context(), info);
let type_name = instance.type_name(info);
if executor
.schema()
.is_named_subtype(&concrete_type_name, fragment.type_condition.item)
|| Some(fragment.type_condition.item) == type_name
{
let sub_result = instance.resolve_into_type(
info,
&concrete_type_name,
Some(&fragment.selection_set[..]),
&sub_exec,
);
if let Ok(Value::Object(object)) = sub_result {
for (k, v) in object {
merge_key_into(result, &k, v);
}
} else if let Err(e) = sub_result {
sub_exec.push_error_at(e, span.start);
}
}
}
Selection::InlineFragment(Spanning {
item: ref fragment,
ref span,
}) => {
if is_excluded(&fragment.directives, executor.variables()) {
continue;
}
let sub_exec = executor.type_sub_executor(
fragment.type_condition.as_ref().map(|c| c.item),
Some(&fragment.selection_set[..]),
);
if let Some(ref type_condition) = fragment.type_condition {
// Check whether the type matches the type condition.
let concrete_type_name = instance.concrete_type_name(sub_exec.context(), info);
if executor
.schema()
.is_named_subtype(&concrete_type_name, type_condition.item)
{
let sub_result = instance.resolve_into_type(
info,
&concrete_type_name,
Some(&fragment.selection_set[..]),
&sub_exec,
);
if let Ok(Value::Object(object)) = sub_result {
for (k, v) in object {
merge_key_into(result, &k, v);
}
} else if let Err(e) = sub_result {
sub_exec.push_error_at(e, span.start);
}
}
} else if !resolve_selection_set_into(
instance,
info,
&fragment.selection_set[..],
&sub_exec,
result,
) {
return false;
}
}
}
}
true
}
pub(super) fn is_excluded<S>(
directives: &Option<Vec<Spanning<Directive<S>>>>,
vars: &Variables<S>,
) -> bool
where
S: ScalarValue,
{
if let Some(directives) = directives {
for Spanning {
item: directive, ..
} in directives
{
let condition: bool = directive
.arguments
.iter()
.flat_map(|m| m.item.get("if"))
.filter_map(|v| v.item.clone().into_const(vars)?.convert().ok())
.next()
.unwrap();
if (directive.name.item == "skip" && condition)
|| (directive.name.item == "include" && !condition)
{
return true;
}
}
}
false
}
/// Merges `response_name`/`value` pair into `result`
pub(crate) fn merge_key_into<S>(result: &mut Object<S>, response_name: &str, value: Value<S>) {
if let Some(v) = result.get_mut_field_value(response_name) {
match v {
Value::Object(dest_obj) => {
if let Value::Object(src_obj) = value {
merge_maps(dest_obj, src_obj);
}
}
Value::List(dest_list) => {
if let Value::List(src_list) = value {
dest_list.iter_mut().zip(src_list).for_each(|(d, s)| {
if let Value::Object(d_obj) = d {
if let Value::Object(s_obj) = s {
merge_maps(d_obj, s_obj);
}
}
});
}
}
_ => {}
}
return;
}
result.add_field(response_name, value);
}
/// Merges `src` object's fields into `dest`
fn merge_maps<S>(dest: &mut Object<S>, src: Object<S>) {
for (key, value) in src {
if dest.contains_field(&key) {
merge_key_into(dest, &key, value);
} else {
dest.add_field(key, value);
}
}
}