1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
//  STATE.rs
//    by Lut99
//
//  Created:
//    16 Sep 2022, 08:22:47
//  Last edited:
//    13 Dec 2023, 08:20:26
//  Auto updated?
//    Yes
//
//  Description:
//!   Defines and implements various structures to keep track of the
//!   compilation state in between snippet compilation runs.
//

use std::cell::{RefCell, RefMut};
use std::collections::{HashMap, HashSet};
use std::rc::Rc;

use brane_dsl::ast::Data;
use brane_dsl::data_type::{ClassSignature, FunctionSignature};
use brane_dsl::symbol_table::{ClassEntry, FunctionEntry, SymbolTable, VarEntry};
use brane_dsl::{DataType, TextRange};
use specifications::package::Capability;
use specifications::version::Version;

use crate::ast::{ClassDef, ComputeTaskDef, Edge, FunctionDef, SymTable, TaskDef, VarDef};
use crate::spec::{BuiltinClasses, BuiltinFunctions};


/***** STATICS *****/
lazy_static! {
    /// The empty list referenced when a function or variable in the DataTable does not exist.
    static ref EMPTY_IDS: HashSet<Data> = HashSet::new();
}





/***** LIBRARY *****/
/// Defines a 'TableState', which is the CompileState's notion of a symbol table.
#[derive(Clone, Debug)]
pub struct TableState {
    /// The functions that are kept for next compilation junks
    pub funcs:   Vec<FunctionState>,
    /// The tasks that are kept for next compilation junks
    pub tasks:   Vec<TaskState>,
    /// The functions that are kept for next compilation junks
    pub classes: Vec<ClassState>,
    /// The functions that are kept for next compilation junks
    pub vars:    Vec<VarState>,

    /// The list of results introduced in this workflow.
    pub results: HashMap<String, String>,
}

impl TableState {
    /// Constructor for the TableState which initializes it with the builtin's only.
    ///
    /// We assume this is a toplevel table, so we assume no functions, tasks, classes or variables have been defined that this table needs to be aware of.
    ///
    /// # Returns
    /// A new instance of the TableState.
    pub fn new() -> Self {
        // Construct the TableLists separately.
        let mut funcs: Vec<FunctionState> = Vec::from(BuiltinFunctions::all_into_state());
        let tasks: Vec<TaskState> = Vec::new();
        let classes: Vec<ClassState> = Vec::from(BuiltinClasses::all_into_state(&mut funcs));
        let vars: Vec<VarState> = Vec::new();

        // use that to construct the rest
        Self { funcs, tasks, classes, vars, results: HashMap::new() }
    }

    /// Constructor for the TableState that doesn't even initialize it to builtins.
    ///
    /// # Returns
    /// A new, completely empty instance of the TableState.
    #[inline]
    pub fn empty() -> Self {
        Self {
            funcs:   Vec::new(),
            tasks:   Vec::new(),
            classes: Vec::new(),
            vars:    Vec::new(),

            results: HashMap::new(),
        }
    }

    /// Constructor for the TableState that initializes it to not really a valid state (but kinda).
    ///
    /// This is useful if you just need a placeholder for a table but know that the function body in question is never executed anyway (e.g.., builtins or external functions).
    ///
    /// # Returns
    /// A new TableState instance that will keep the compiler happy but will probably result into runtime crashes once used (pay attention to overflows).
    #[inline]
    pub fn none() -> Self {
        Self {
            funcs:   Vec::new(),
            tasks:   Vec::new(),
            classes: Vec::new(),
            vars:    Vec::new(),

            results: HashMap::new(),
        }
    }

    /// Injects the TableState into the given SymbolTable. The entries will already have indices properly resolved.
    ///
    /// Only global definitions are injected. Any nested ones (except for class stuff) is irrelevant due to them never being accessed in future workflow snippets.
    ///
    /// # Arguments
    /// - `st`: The (mutable) borrow to the symbol table where we will inject everything.
    ///
    /// # Returns
    /// Nothing, but does alter the given symbol table to insert everything.
    pub fn inject(&self, st: &mut RefMut<SymbolTable>) {
        // First, inject the functions
        for (i, f) in self.funcs.iter().enumerate() {
            // Create the thingamabob and set the index
            let mut entry: FunctionEntry = f.into();
            entry.index = i;

            // Insert it
            if let Err(err) = st.add_func(entry) {
                panic!("Failed to inject previously defined function in global symbol table: {err}");
            }
        }

        // Do tasks...
        for (i, t) in self.tasks.iter().enumerate() {
            // Create the thingamabob and set the index
            let mut entry: FunctionEntry = t.into();
            entry.index = i;

            // Insert it
            if let Err(err) = st.add_func(entry) {
                panic!("Failed to inject previously defined task in global symbol table: {err}");
            }
        }

        // ...classes...
        for (i, c) in self.classes.iter().enumerate() {
            // Create the thingamabob and set the index
            let mut entry: ClassEntry = c.into_entry(&self.funcs);
            entry.index = i;

            // Insert it
            if let Err(err) = st.add_class(entry) {
                panic!("Failed to inject previously defined class in global symbol table: {err}");
            }
        }

        // ...and, finally, variables
        for (i, v) in self.vars.iter().enumerate() {
            // Create the thingamabob and set the index
            let mut entry: VarEntry = v.into();
            entry.index = i;

            // Insert it
            if let Err(err) = st.add_var(entry) {
                panic!("Failed to inject previously defined variable in global symbol table: {err}");
            }
        }
    }

    /// Returns the function with the given index, if any.
    ///
    /// # Arguments
    /// - `id`: The ID/index of the function to get the compile state of.
    ///
    /// # Returns
    /// A reference to the corresponding [`FunctionState`].
    ///
    /// # Panics
    /// This function may panic if `id` is out-of-bounds.
    #[inline]
    pub fn func(&self, id: usize) -> &FunctionState {
        if id >= self.funcs.len() {
            panic!("Given function ID '{}' is out-of-bounds for TableState with {} functions", id, self.funcs.len());
        }
        &self.funcs[id]
    }

    /// Returns the task with the given index, if any.
    ///
    /// # Arguments
    /// - `id`: The ID/index of the task to get the compile state of.
    ///
    /// # Returns
    /// A reference to the corresponding [`TaskState`].
    ///
    /// # Panics
    /// This function may panic if `id` is out-of-bounds.
    #[inline]
    pub fn task(&self, id: usize) -> &TaskState {
        if id >= self.tasks.len() {
            panic!("Given task ID '{}' is out-of-bounds for TableState with {} tasks", id, self.tasks.len());
        }
        &self.tasks[id]
    }

    /// Returns the class with the given index, if any.
    ///
    /// # Arguments
    /// - `id`: The ID/index of the class to get the compile state of.
    ///
    /// # Returns
    /// A reference to the corresponding [`ClassState`].
    ///
    /// # Panics
    /// This function may panic if `id` is out-of-bounds.
    #[inline]
    pub fn class(&self, id: usize) -> &ClassState {
        if id >= self.classes.len() {
            panic!("Given class ID '{}' is out-of-bounds for TableState with {} classes", id, self.classes.len());
        }
        &self.classes[id]
    }

    /// Returns the variable with the given index, if any.
    ///
    /// # Arguments
    /// - `id`: The ID/index of the variable to get the compile state of.
    ///
    /// # Returns
    /// A reference to the corresponding [`VarState`].
    ///
    /// # Panics
    /// This function may panic if `id` is out-of-bounds.
    #[inline]
    pub fn var(&self, id: usize) -> &VarState {
        if id >= self.vars.len() {
            panic!("Given variable ID '{}' is out-of-bounds for TableState with {} variables", id, self.vars.len());
        }
        &self.vars[id]
    }

    /// Returns the offset for the functions.
    #[inline]
    pub fn n_funcs(&self) -> usize { self.funcs.len() }

    /// Returns the offset for the tasks.
    #[inline]
    pub fn n_tasks(&self) -> usize { self.tasks.len() }

    /// Returns the offset for the classes.
    #[inline]
    pub fn n_classes(&self) -> usize { self.classes.len() }

    /// Returns the offset for the variables.
    #[inline]
    pub fn n_vars(&self) -> usize { self.vars.len() }
}

impl Default for TableState {
    #[inline]
    fn default() -> Self { Self::new() }
}

impl From<TableState> for SymTable {
    fn from(value: TableState) -> Self {
        // Functions
        let mut funcs: Vec<FunctionDef> = Vec::with_capacity(value.funcs.len());
        for f in value.funcs {
            funcs.push(f.into());
        }

        // Tasks
        let mut tasks: Vec<TaskDef> = Vec::with_capacity(value.tasks.len());
        for t in value.tasks {
            tasks.push(t.into());
        }

        // Classes
        let mut classes: Vec<ClassDef> = Vec::with_capacity(value.classes.len());
        for c in value.classes {
            classes.push(c.into());
        }

        // Finally, variables
        let mut vars: Vec<VarDef> = Vec::with_capacity(value.vars.len());
        for v in value.vars {
            vars.push(v.into());
        }

        // Finally finally, the data & resultes
        let results: HashMap<String, String> = value.results;

        // Done; return them as a table
        Self::with(funcs, tasks, classes, vars, results)
    }
}

impl From<&TableState> for SymTable {
    fn from(value: &TableState) -> Self { Self::from(value.clone()) }
}



/// Defines whatever we need to know of a function in between workflow snippet calls.
#[derive(Clone, Debug)]
pub struct FunctionState {
    /// The name of the function.
    pub name:      String,
    /// The signature of the function.
    pub signature: FunctionSignature,

    /// If this function is a method in a class, then the class' name is stored here.
    pub class_name: Option<String>,

    /// The range that links this function back to the source text.
    pub range: TextRange,
}

impl From<&FunctionState> for FunctionEntry {
    #[inline]
    fn from(value: &FunctionState) -> Self {
        Self {
            name:      value.name.clone(),
            signature: value.signature.clone(),
            params:    vec![],

            package_name:    None,
            package_version: None,
            class_name:      value.class_name.clone(),

            arg_names:    vec![],
            requirements: None,

            index: usize::MAX,

            range: value.range.clone(),
        }
    }
}

impl From<FunctionState> for FunctionDef {
    #[inline]
    fn from(value: FunctionState) -> Self {
        FunctionDef { name: value.name, args: value.signature.args.into_iter().map(|d| d.into()).collect(), ret: value.signature.ret.into() }
    }
}



#[derive(Clone, Debug)]
pub struct TaskState {
    /// The name of the function.
    pub name: String,
    /// The signature of the function.
    pub signature: FunctionSignature,
    /// The names of the arguments. They are mapped by virtue of having the same index as in `signature.args`.
    pub arg_names: Vec<String>,
    /// Any requirements for this function.
    pub requirements: HashSet<Capability>,

    /// The name of the package where this Task is stored.
    pub package_name:    String,
    /// The version of the package where this Task is stored.
    pub package_version: Version,

    /// The range that links this task back to the source text.
    pub range: TextRange,
}

impl From<&TaskState> for FunctionEntry {
    #[inline]
    fn from(value: &TaskState) -> Self {
        Self {
            name:      value.name.clone(),
            signature: value.signature.clone(),
            params:    vec![],

            package_name:    Some(value.package_name.clone()),
            package_version: Some(value.package_version),
            class_name:      None,

            arg_names:    value.arg_names.clone(),
            requirements: Some(value.requirements.clone()),

            index: usize::MAX,

            range: value.range.clone(),
        }
    }
}

impl From<TaskState> for TaskDef {
    #[inline]
    fn from(value: TaskState) -> Self {
        Self::Compute(ComputeTaskDef {
            package: value.package_name,
            version: value.package_version,

            function:     Box::new(FunctionDef {
                name: value.name,
                args: value.signature.args.into_iter().map(|d| d.into()).collect(),
                ret:  value.signature.ret.into(),
            }),
            args_names:   value.arg_names,
            requirements: value.requirements,
        })
    }
}



/// Defines whatever we need to know of a class in between workflow snippet calls.
#[derive(Clone, Debug)]
pub struct ClassState {
    /// The name of the class.
    pub name:    String,
    /// The list of properties in this class.
    pub props:   Vec<VarState>,
    /// The list of methods in this class (as references to the global class list)
    pub methods: Vec<usize>,

    /// If this class is imported from a package, then the package's name is stored here.
    pub package_name:    Option<String>,
    /// If this class is imported from a package, then the package's version is stored here.
    pub package_version: Option<Version>,

    /// The range that links this class back to the source text.
    pub range: TextRange,
}

impl ClassState {
    /// Converts this ClassState into a ClassEntry, using the given list of functions to resolve the internal list.
    ///
    /// # Arguments
    /// - `funcs`: The Vec of functions to resolve indices with.
    ///
    /// # Returns
    /// A new ClassEntry instance.
    pub fn into_entry(&self, funcs: &[FunctionState]) -> ClassEntry {
        // Create the symbol table
        let c_table: Rc<RefCell<SymbolTable>> = SymbolTable::new();
        {
            let mut cst: RefMut<SymbolTable> = c_table.borrow_mut();

            // Add the properties
            for p in &self.props {
                if let Err(err) = cst.add_var(p.into()) {
                    panic!("Failed to insert class property into new class symbol table: {err}");
                }
            }
            // Add the methods
            for m in &self.methods {
                if let Err(err) = cst.add_func((&funcs[*m]).into()) {
                    panic!("Failed to insert class method into new class symbol table: {err}");
                }
            }
        }

        // Create the entry with it
        ClassEntry {
            signature:    ClassSignature::new(self.name.clone()),
            symbol_table: c_table,

            package_name:    self.package_name.clone(),
            package_version: self.package_version,

            index: usize::MAX,

            range: self.range.clone(),
        }
    }
}

impl From<ClassState> for ClassDef {
    #[inline]
    fn from(value: ClassState) -> Self {
        ClassDef {
            name:    value.name,
            props:   value.props.into_iter().map(|v| v.into()).collect(),
            methods: value.methods,

            package: value.package_name,
            version: value.package_version,
        }
    }
}





/// Defines whatever we need to know of a variable in between workflow snippet calls.
#[derive(Clone, Debug)]
pub struct VarState {
    /// The name of the variable.
    pub name:      String,
    /// The data type of this variable.
    pub data_type: DataType,

    /// If this variable is a parameter in a function, then the function's name is stored here.
    pub function_name: Option<String>,
    /// If this variable is a property in a class, then the class' name is stored here.
    pub class_name:    Option<String>,

    /// The range that links this variable back to the source text.
    pub range: TextRange,
}

impl From<&VarState> for VarEntry {
    #[inline]
    fn from(value: &VarState) -> Self {
        Self {
            name:      value.name.clone(),
            data_type: value.data_type.clone(),

            function_name: value.function_name.clone(),
            class_name:    value.class_name.clone(),

            index: usize::MAX,

            range: value.range.clone(),
        }
    }
}

impl From<VarState> for VarDef {
    #[inline]
    fn from(value: VarState) -> Self { Self { name: value.name, data_type: value.data_type.into() } }
}



/// Defines a DataState, which is a bit like a symbol table for data identifiers - except that it's temporal (i.e., has a notion of values being overwritten).
#[derive(Clone, Debug)]
pub struct DataState {
    // /// Maps function names (=identifiers) to their current possible list of data identifiers _they return_. Since function bodies are constant, it may be expected the list of possible identifiers is also.
    // funcs : HashMap<*const RefCell<FunctionEntry>, HashSet<Data>>,
    // /// Maps variable names (=identifiers) to their current possible list of data identifiers they may be. An empty set implies it's not a Data or IntermediateResult struct.
    // vars  : HashMap<*const RefCell<VarEntry>, HashSet<Data>>,
    /// Maps function names (=identifiers) to their current possible list of data identifiers _they return_. Since function bodies are constant, it may be expected the list of possible identifiers is also.
    funcs: HashMap<String, HashSet<Data>>,
    /// Maps variable names (=identifiers) to their current possible list of data identifiers they may be. An empty set implies it's not a Data or IntermediateResult struct.
    vars:  HashMap<String, HashSet<Data>>,
}

impl DataState {
    /// Constructor for the DataTable that initializes it to empty.
    ///
    /// # Returns
    /// A new DataTable instance.
    #[inline]
    pub fn new() -> Self { Self { funcs: HashMap::new(), vars: HashMap::new() } }

    // /// Sets a whole list of new possible values for this function, overwriting any existing ones.
    // ///
    // /// # Arguments
    // /// - `f`: The pointer to the function's entry that uniquely identifies it.
    // /// - `new_ids`: The Data/IntermediateResult identifier to add as possible return dataset for this function.
    // #[inline]
    // pub fn set_funcs(&mut self, f: &Rc<RefCell<FunctionEntry>>, new_ids: HashSet<Data>) {
    //     self.funcs.insert(Rc::as_ptr(f), new_ids);
    // }
    /// Sets a whole list of new possible values for this function, overwriting any existing ones.
    ///
    /// # Arguments
    /// - `name`: The name of the function to set the possible datasets for.
    /// - `new_ids`: The Data/IntermediateResult identifier to add as possible return dataset for this function.
    #[inline]
    pub fn set_funcs(&mut self, name: impl Into<String>, new_ids: HashSet<Data>) { self.funcs.insert(name.into(), new_ids); }

    // /// Sets a whole list of new possible values for this variable, overwriting any existing ones.
    // ///
    // /// # Arguments
    // /// - `v`: The pointer to the variable's entry that uniquely identifies it.
    // /// - `id`: The Data/IntermediateResult identifier to add as possible return dataset for this variable.
    // #[inline]
    // pub fn set_vars(&mut self, v: &Rc<RefCell<VarEntry>>, new_ids: HashSet<Data>) {
    //     self.vars.insert(Rc::as_ptr(v), new_ids);
    // }
    /// Sets a whole list of new possible values for this variable, overwriting any existing ones.
    ///
    /// # Arguments
    /// - `name`: The name of the variable to set the possible datasets for.
    /// - `id`: The Data/IntermediateResult identifier to add as possible return dataset for this variable.
    #[inline]
    pub fn set_vars(&mut self, name: impl Into<String>, new_ids: HashSet<Data>) { self.vars.insert(name.into(), new_ids); }

    // /// Returns the list of possible values for the given function. If it does not exist, returns an empty one.
    // ///
    // /// # Arguments
    // /// - `f`: The pointer to the function's entry that uniquely identifies it.
    // ///
    // /// # Returns
    // /// A reference to the list of possible values for the given function.
    // #[inline]
    // pub fn get_func(&self, f: &Rc<RefCell<FunctionEntry>>) -> &HashSet<Data> {
    //     self.funcs.get(&Rc::as_ptr(f)).unwrap_or(&*EMPTY_IDS)
    // }
    /// Returns the list of possible values for the given function. If it does not exist, returns an empty one.
    ///
    /// # Arguments
    /// - `name`: The name of the function to get the possible datasets of.
    ///
    /// # Returns
    /// A reference to the list of possible values for the given function.
    #[inline]
    pub fn get_func(&self, name: impl AsRef<str>) -> &HashSet<Data> { self.funcs.get(name.as_ref()).unwrap_or(&*EMPTY_IDS) }

    // /// Returns the list of possible values for the given variable. If it does not exist, returns an empty one.
    // ///
    // /// # Arguments
    // /// - `v`: The pointer to the variable's entry that uniquely identifies it.
    // ///
    // /// # Returns
    // /// A reference to the list of possible values for the given variable.
    // #[inline]
    // pub fn get_var(&self, v: &Rc<RefCell<VarEntry>>) -> &HashSet<Data> {
    //     self.vars.get(&Rc::as_ptr(v)).unwrap_or(&*EMPTY_IDS)
    // }
    /// Returns the list of possible values for the given variable. If it does not exist, returns an empty one.
    ///
    /// # Arguments
    /// - `name`: The name of the variable to get the possible datasets of.
    ///
    /// # Returns
    /// A reference to the list of possible values for the given variable.
    #[inline]
    pub fn get_var(&self, name: impl AsRef<str>) -> &HashSet<Data> { self.vars.get(name.as_ref()).unwrap_or(&*EMPTY_IDS) }

    /// The extend function extends this table with the given one, i.e., all of the possibilities are merged.
    ///
    /// # Arguments
    /// - `other`: The other table to merge with this one.
    pub fn extend(&mut self, other: Self) {
        // Add each of the functions in other that are missing here
        for (name, ids) in other.funcs {
            if let Some(self_ids) = self.funcs.get_mut(&name) {
                self_ids.extend(ids);
            } else {
                self.funcs.insert(name, ids);
            }
        }

        // Do the same for all variables
        for (name, ids) in other.vars {
            if let Some(self_ids) = self.vars.get_mut(&name) {
                self_ids.extend(ids);
            } else {
                self.vars.insert(name, ids);
            }
        }
    }
}

impl Default for DataState {
    #[inline]
    fn default() -> Self { Self::new() }
}



/// Defines whatever we need to remember w.r.t. compile-time in between two submissions of part of a workflow (i.e., repl-runs).
#[derive(Clone, Debug)]
pub struct CompileState {
    /// Contains the offset (in lines) of this snippet compared to previous snippets in the source text.
    pub offset: usize,

    /// Defines the global table currently in the workflow (which contains the nested function tables).
    pub table:  TableState,
    /// Contains functions, mapped by function name to already very neatly compiled edges.
    pub bodies: HashMap<String, Vec<Edge>>,

    /// Contains functions and variables and the possible datasets they may evaluate to.
    pub data: DataState,
}

impl CompileState {
    /// Constructor for the CompileState that initializes it as new.
    ///
    /// # Returns
    /// A new CompileState instance.
    #[inline]
    pub fn new() -> Self {
        Self {
            offset: 0,

            table:  TableState::new(),
            bodies: HashMap::new(),

            data: DataState::new(),
        }
    }
}

impl Default for CompileState {
    #[inline]
    fn default() -> Self { Self::new() }
}