1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//  DATA TYPE.rs
//    by Lut99
//
//  Created:
//    23 Aug 2022, 20:34:33
//  Last edited:
//    17 Jan 2023, 15:14:01
//  Auto updated?
//    Yes
//
//  Description:
//!   Defines the possible data types in the BraneScript/Bakery AST.
//

use std::fmt::{Display, Formatter, Result as FResult};
use std::mem::discriminant;
use std::str::FromStr;

use serde::{Deserialize, Serialize};


/***** LIBRARY *****/
/// Defines a Function's signature (i.e., unique type information).
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub struct FunctionSignature {
    /// The types (and number) of arguments.
    pub args: Vec<DataType>,
    /// The return type
    pub ret:  DataType,
}

impl FunctionSignature {
    /// Constructor for the FunctionSignature.
    ///
    /// # Arguments
    /// - `args_types`: The types of the arguments of the function. Also determines the number of them.
    /// - `return_type`: The return type of the function.
    ///
    /// # Returns
    /// A new FunctionSignature.
    #[inline]
    pub fn new(args_types: Vec<DataType>, return_type: DataType) -> Self { Self { args: args_types, ret: return_type } }
}

impl Default for FunctionSignature {
    #[inline]
    fn default() -> Self { Self { args: vec![], ret: DataType::Any } }
}

impl Display for FunctionSignature {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
        write!(f, "({}) -> {}", self.args.iter().map(|d| format!("{d}")).collect::<Vec<String>>().join(", "), self.ret)
    }
}



/// Defines a Class' signature (i.e., unique type information).
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub struct ClassSignature {
    /// The name of the class (which is precisely all we need to uniquely identify the class and its type).
    pub name: String,
}

impl ClassSignature {
    /// Constructor for the ClassSignature.
    ///
    /// # Generic types
    /// - `S`: The String-like type of the class' `name`.
    ///
    /// # Arguments
    /// - `name`: The name of the class.
    ///
    /// # Returns
    /// A new ClassSignature.
    #[inline]
    pub fn new<S: Into<String>>(name: S) -> Self { Self { name: name.into() } }
}

impl Display for ClassSignature {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> FResult { write!(f, "{}{{}}", self.name) }
}





/// Defines the datatypes in the BraneScript/Bakery AST.
#[derive(Clone, Debug, Deserialize, Eq, PartialEq, Serialize)]
pub enum DataType {
    // Meta types
    /// The 'Any' type basically means 'resolve at runtime'.
    Any,
    /// The 'Void' type basically means 'no type / value'.
    Void,

    // Literals
    /// Boolean values (i.e., true or false, 1 or 0, yes or no, etc).
    Boolean,
    /// Integral values (i.e., non-decimal numbers)
    Integer,
    /// Real values (i.e., decimal numbers)
    Real,
    /// String values (i.e., arrays of characters)
    String,
    /// Semantic versioning (i.e., major.minor.patch)
    Semver,

    // Composite types (sorry Thomas)
    // /// References (i.e., types that live somewhere else)
    // Ref(Box<DataType>),
    /// Arrays (i.e., a memory area divided into homogeneous types)
    Array(Box<DataType>),
    /// Functions (i.e., executable pieces of code)
    Function(Box<FunctionSignature>),
    /// Classes (i.e., a memory area divided into heterogeneous types)
    Class(String),
}

impl DataType {
    /// Returns whether or not this DataType may be implicitly converted to the given one.
    ///
    /// # Generic arguments
    /// - `D`: The DataType-like type of `other`.
    ///
    /// # Arguments
    /// - `other`: The DataType to which we attempt to implicitly convert.
    ///
    /// # Returns
    /// True if it is convertible, false otherwise.
    #[inline]
    pub fn coercible_to<D: AsRef<DataType>>(&self, other: D) -> bool {
        // Compare as pairs
        use DataType::*;
        match (self, other.as_ref()) {
            // Specific conversions
            (Integer, Boolean) => true,
            (Boolean, Integer) => true,
            (Integer, Real) => true,

            // Types that are always casteable in one way
            (Any, _) => true,
            (_, Any) => true,
            (_, String) => true,

            // Trivial conversions
            (Array(t1), Array(t2)) => t1.coercible_to(t2),
            (t1, Array(t2)) => t1.coercible_to(t2),
            (Class(n1), Class(n2)) => {
                // We do allow data to be demoted to intermediate results
                // Note: we do this quick 'n' dirty, ideally we wanna used the defined BuiltinClass for this (but that's in a crate with cyclic dependency, jadda jadda)
                if n1 == "Data" && n2 == "IntermediateResult" { true } else { n1 == n2 }
            },
            (t1, t2) => discriminant(t1) == discriminant(t2),
        }
    }

    /// Returns whether or not this DataType may be implicitly converted to a function at all (of any signature).
    ///
    /// To determine if the DataType is implicitly convertible to a function of a specific signature, use `DataType::coercible_to()`.
    ///
    /// # Returns
    /// True if it is convertible, false otherwise.
    #[inline]
    pub fn coercible_to_function(&self) -> bool {
        use DataType::*;
        matches!(self, Any | Function(_))
    }
}

impl AsRef<DataType> for DataType {
    #[inline]
    fn as_ref(&self) -> &DataType { self }
}

impl From<&DataType> for DataType {
    #[inline]
    fn from(value: &DataType) -> Self { value.clone() }
}

impl From<&str> for DataType {
    #[inline]
    fn from(value: &str) -> Self {
        // First: any arrays are done recursively
        if !value.is_empty() && &value[..1] == "[" && &value[value.len() - 1..] == "]" {
            return Self::Array(Box::new(Self::from(&value[1..value.len() - 1])));
        } else if value.len() >= 2 && &value[value.len() - 2..] == "[]" {
            return Self::Array(Box::new(Self::from(&value[..value.len() - 2])));
        }

        // Otherwise, match literals & classes
        use DataType::*;
        match value {
            // Literal types
            "bool" | "boolean" => Boolean,
            "int" | "integer" => Integer,
            "float" | "real" => Real,
            "string" => String,

            // The rest is always a class
            value => Class(value.into()),
        }
    }
}

impl From<&String> for DataType {
    #[inline]
    fn from(value: &String) -> Self {
        // Use the string-one
        Self::from(value.as_str())
    }
}

impl From<String> for DataType {
    #[inline]
    fn from(value: String) -> Self {
        // Use the string-one
        Self::from(value.as_str())
    }
}

impl FromStr for DataType {
    type Err = ();

    #[inline]
    fn from_str(value: &str) -> Result<Self, Self::Err> { Ok(Self::from(value)) }
}

impl Display for DataType {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
        use DataType::*;
        match self {
            Any => write!(f, "Any"),
            Void => write!(f, "Void"),

            Boolean => write!(f, "Boolean"),
            Integer => write!(f, "Integer"),
            Real => write!(f, "Real"),
            String => write!(f, "String"),
            Semver => write!(f, "Semver"),

            Array(t) => write!(f, "Array<{t}>"),
            Function(s) => write!(f, "Func<{s}>"),
            Class(n) => write!(f, "Class<{n}>"),
        }
    }
}