1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
// PROFILING.rs
// by Lut99
//
// Created:
// 01 Feb 2023, 09:54:51
// Last edited:
// 06 Feb 2024, 12:53:50
// Auto updated?
// Yes
//
// Description:
//! A second version of the profiling library, with better support for
//! generate dynamic yet pretty and (most of all) ordered profiling
//! logs.
//!
//! Note that, while this library is not designed for Edge timings (i.e.,
//! user-relevant profiling), some parts of it can probably be re-used for
//! that (especially the Timing struct).
//
use std::fmt::{Debug, Display, Formatter, Result as FResult};
use std::fs::File;
use std::future::Future;
use std::io::Write;
use std::marker::PhantomData;
use std::ops::Deref;
use std::path::PathBuf;
use std::str;
use std::sync::Arc;
use std::time::{Duration, Instant};
use chrono::{DateTime, Local};
use enum_debug::EnumDebug;
use log::warn;
use parking_lot::{Mutex, MutexGuard};
use serde::{Deserialize, Serialize};
/***** HELPER MACROS *****/
/// Formats a given number of spaces.
macro_rules! spaces {
($n:expr) => {
" ".repeat($n)
};
}
/***** HELPER ENUMS *****/
/// Defines an enum that abstracts of the specific kind of timing (i.e., branch or leaf).
#[derive(Debug, Deserialize, EnumDebug, Serialize)]
enum ProfileTiming {
/// It's a single Timing (i.e., a leaf)
Timing(String, Arc<Mutex<Timing>>),
/// It's a nested scope.
Scope(Arc<ProfileScope>),
}
impl ProfileTiming {
/// Returns the internal Timing.
///
/// # Panics
/// This function panics if we were not a timing but a `ProfileTiming::Scope` instead.
#[inline]
fn timing(&self) -> &Arc<Mutex<Timing>> {
if let Self::Timing(_, timing) = self {
timing
} else {
panic!("Cannot unwrap ProfileTiming::{} as ProfileTiming::Timing", self.variant());
}
}
/// Returns whether this ProfileTiming is a scope.
#[inline]
fn is_scope(&self) -> bool { matches!(self, Self::Scope(_)) }
/// Returns the internal ProfileScope.
///
/// # Panics
/// This function panics if we were not a scope but a `ProfileTiming::Timing` instead.
#[inline]
fn scope(&self) -> &Arc<ProfileScope> {
if let Self::Scope(scope) = self {
scope
} else {
panic!("Cannot unwrap ProfileTiming::{} as ProfileTiming::Scope", self.variant());
}
}
}
/***** FORMATTERS *****/
/// Formats the giving Timing to show a (hopefully) sensible scale to the given formatter.
#[derive(Debug)]
pub struct TimingFormatter<'t>(&'t Timing);
impl<'t> Display for TimingFormatter<'t> {
fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
if self.0.nanos < 10_000 {
write!(f, "{}ns", self.0.nanos)
} else if self.0.nanos < 10_000_000 {
write!(f, "{}us", self.0.nanos / 1_000)
} else if self.0.nanos < 10_000_000_000 {
write!(f, "{}ms", self.0.nanos / 1_000_000)
} else {
write!(f, "{}s", self.0.nanos / 1_000_000_000)
}
}
}
/// Formats the given ProfileReport to show a new list of results (but with a clear toplevel).
#[derive(Debug)]
pub struct ProfileReportFormatter<'r> {
/// The scope of the toplevel report to write.
scope: &'r ProfileScope,
}
impl<'r> Display for ProfileReportFormatter<'r> {
fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
writeln!(f, "### Timing report for {} ###", self.scope.name)?;
write!(f, "{}", self.scope.display())
}
}
/// Formats the given ProfileScope to show a neat list of results.
#[derive(Debug)]
pub struct ProfileScopeFormatter<'s> {
/// The scope to format.
scope: &'s ProfileScope,
/// The indentation to format with.
indent: usize,
}
impl<'s> Display for ProfileScopeFormatter<'s> {
fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
// Print the internal timings
let mut newline: bool = false;
for t in self.scope.timings.lock().iter() {
// Add a newline if required
if t.is_scope() || newline {
writeln!(f)?;
}
// Write the entry
use ProfileTiming::*;
match t {
Timing(name, timing) => {
// Write the timing as a list item
writeln!(f, "{} - {} timing results: {}", spaces!(self.indent), name, timing.lock().display())?;
newline = false;
},
Scope(scope) => {
// Write the scope also as a list item
writeln!(f, "{} - {} timing results:", spaces!(self.indent), scope.name)?;
write!(f, "{}", scope.display_indented(self.indent + 4))?;
newline = true;
},
}
}
// Done
Ok(())
}
}
/***** AUXILLARY *****/
/// Defines a taken Timing, which represents an amount of time that has passed.
#[derive(Clone, Copy, Debug, Deserialize, Serialize)]
pub struct Timing {
/// The amount of nanoseconds that have passed.
nanos: u128,
}
impl Timing {
/// Returns a Timing in which no time has passed.
///
/// # Returns
/// A new Timing instance, for which all `Timing::elapsed_XX()` functions will return 0.
#[inline]
pub const fn none() -> Self { Self { nanos: 0 } }
/// Writes a human-readable representation of the elapsed time in this Timing.
///
/// Will attempt to find the correct scale automagically; specifically, will try to write as seconds _unless_ the time is less than that. Then, it will move to milliseconds, all the way up to nanoseconds.
///
/// # Returns
/// A TimingFormatter that implements Display to do this kind of formatting on this Timing.
#[inline]
pub fn display(&self) -> TimingFormatter { TimingFormatter(self) }
/// Returns the time that has been elapsed, in seconds.
///
/// # Returns
/// The elapsed time that this Timing represents in seconds.
#[inline]
pub const fn elapsed_s(&self) -> u128 { self.nanos / 1_000_000_000 }
/// Returns the time that has been elapsed, in milliseconds.
///
/// # Returns
/// The elapsed time that this Timing represents in milliseconds.
#[inline]
pub const fn elapsed_ms(&self) -> u128 { self.nanos / 1_000_000 }
/// Returns the time that has been elapsed, in microseconds.
///
/// # Returns
/// The elapsed time that this Timing represents in microseconds.
#[inline]
pub const fn elapsed_us(&self) -> u128 { self.nanos / 1_000 }
/// Returns the time that has been elapsed, in nanoseconds.
///
/// # Returns
/// The elapsed time that this Timing represents in nanoseconds.
#[inline]
pub const fn elapsed_ns(&self) -> u128 { self.nanos }
}
impl AsRef<Timing> for Timing {
#[inline]
fn as_ref(&self) -> &Self { self }
}
impl From<&Timing> for Timing {
#[inline]
fn from(value: &Timing) -> Self { *value }
}
impl From<&mut Timing> for Timing {
#[inline]
fn from(value: &mut Timing) -> Self { *value }
}
impl From<Duration> for Timing {
#[inline]
fn from(value: Duration) -> Self { Timing { nanos: value.as_nanos() } }
}
impl From<&Duration> for Timing {
#[inline]
fn from(value: &Duration) -> Self { Timing { nanos: value.as_nanos() } }
}
impl From<&mut Duration> for Timing {
#[inline]
fn from(value: &mut Duration) -> Self { Timing { nanos: value.as_nanos() } }
}
/// Defines the TimerGuard, which takes a Timing as long as it is in scope.
#[derive(Debug)]
pub struct TimerGuard<'s> {
/// The start of the timing.
start: Instant,
/// The timing to populate.
timing: Arc<Mutex<Timing>>,
/// We mark the phantom lifetime because the above is a weak reference
_lifetime: PhantomData<&'s ()>,
}
impl<'s> TimerGuard<'s> {
/// Early stop the timer. This effectively just janks the guard out-of-scope by taking ownership of it.
#[inline]
pub fn stop(self) {}
}
impl<'s> Drop for TimerGuard<'s> {
fn drop(&mut self) {
// Set it, done
let mut lock: MutexGuard<Timing> = self.timing.lock();
*lock = self.start.elapsed().into();
}
}
/// Provides a convenience wrapper around a reference to a ProfileScope.
#[derive(Clone, Debug)]
pub struct ProfileScopeHandle<'s> {
/// The actual scope itself.
scope: Arc<ProfileScope>,
/// A lifetime which allows us to assume the weak reference is valid.
_lifetime: PhantomData<&'s ()>,
}
impl ProfileScopeHandle<'static> {
/// Provides a dummy handle for if you are not interested in profiling, but need to use the functions.
#[inline]
pub fn dummy() -> Self { Self { scope: Arc::new(ProfileScope::new("<<<dummy>>>")), _lifetime: Default::default() } }
}
impl<'s> ProfileScopeHandle<'s> {
/// Finishes a scope, by janking the handle wrapping it out-of-scope.
#[inline]
pub fn finish(self) {}
}
impl<'s> Deref for ProfileScopeHandle<'s> {
type Target = ProfileScope;
#[inline]
fn deref(&self) -> &Self::Target { &self.scope }
}
/// Provides a convenience wrapper around a reference to a ProfileScope that ignores the lifetime mumbo.
///
/// If this object outlives its parent scope, there won't be any errors; _however_, note that the profilings collected afterwards will not be printed.
#[derive(Clone, Debug)]
pub struct ProfileScopeHandleOwned {
/// The actual scope itself.
scope: Arc<ProfileScope>,
}
impl ProfileScopeHandleOwned {
/// Provides a dummy handle for if you are not interested in profiling, but need to use the functions.
#[inline]
pub fn dummy() -> Self { Self { scope: Arc::new(ProfileScope::new("<<<dummy>>>")) } }
}
impl ProfileScopeHandleOwned {
/// Finishes a scope, by janking the handle wrapping it out-of-scope.
#[inline]
pub fn finish(self) {}
}
impl Deref for ProfileScopeHandleOwned {
type Target = ProfileScope;
#[inline]
fn deref(&self) -> &Self::Target { &self.scope }
}
impl<'s> From<ProfileScopeHandle<'s>> for ProfileScopeHandleOwned {
#[inline]
fn from(value: ProfileScopeHandle<'s>) -> Self { Self { scope: value.scope } }
}
/***** LIBRARY *****/
/// Defines the toplevel ProfileReport that writes to stdout or disk or whatever when it goes out-of-scope.
#[derive(Debug, Deserialize, Serialize)]
pub struct ProfileReport<W: Write> {
/// The writer that we wrap.
writer: Option<W>,
/// The toplevel scope that we wrap. NOTE: Is [`Option`] to extract it at [`ProfileReport::into_scope()`].
scope: Option<ProfileScope>,
}
impl ProfileReport<File> {
/// Constructor for the ProfileReport that will write it to a file in a default location (`/logs/profile`) with a default name (date & time of the profile state) when it goes out-of-scope.
///
/// # Arguments
/// - `name`: The name for the toplevel scope in this report.
/// - `filename`: A more snake-case-like filename for the file.
///
/// # Returns
/// A new ProfileReport instance.
pub fn auto_reporting_file(name: impl Into<String>, file_name: impl Into<String>) -> Self {
// Define the target path
let now: DateTime<Local> = Local::now();
let path: PathBuf =
PathBuf::from("/logs").join("profile").join(format!("profile_{}_{}.txt", file_name.into(), now.format("%Y-%m-%d_%H-%M-%s")));
// Attempt to open the file
let handle: Option<File> = match File::create(&path) {
Ok(handle) => Some(handle),
Err(err) => {
warn!("Failed to create profile log file '{}': {} (report will not be auto-printed)", path.display(), err);
None
},
};
// Run the thing
Self { writer: handle, scope: Some(ProfileScope::new(name)) }
}
}
impl<W: Write> ProfileReport<W> {
/// Constructor for the ProfileReport that will write it to the given `Write`r when it goes out-of-scope.
///
/// # Arguments
/// - `name`: The name for the toplevel scope in this report.
/// - `writer`: The `Write`-enabled writer that we will write to upon dropping.
///
/// # Returns
/// A new ProfileReport instance.
#[inline]
pub fn auto_reporting(name: impl Into<String>, writer: impl Into<W>) -> Self {
Self { writer: Some(writer.into()), scope: Some(ProfileScope::new(name)) }
}
/// Returns the inner scope that can be used without worrying about auto-reporting.
///
/// # Returns
/// A reference to the [`ProfileScope`] that can be used to do anything except the gnarly auto-reporting.
#[inline]
pub fn scope(&self) -> &ProfileScope { self.scope.as_ref().unwrap() }
/// Returns the inner scope that can be used without worrying about auto-reporting.
///
/// # Returns
/// A [`ProfileScope`] that can be used to do anything except the gnarly auto-reporting.
#[inline]
pub fn into_scope(mut self) -> ProfileScope {
let scope: ProfileScope = self.scope.take().unwrap();
std::mem::forget(self);
scope
}
}
impl<W: Write> Drop for ProfileReport<W> {
fn drop(&mut self) {
// Simply try to write to our internal thing, if any
if let Some(writer) = &mut self.writer {
let scope: &ProfileScope = self.scope.as_ref().unwrap();
if let Err(err) = write!(writer, "{}", ProfileReportFormatter { scope }) {
warn!("Failed to auto-report ProfileReport '{}': {}", scope.name, err);
};
}
}
}
impl<W: Write> Deref for ProfileReport<W> {
type Target = ProfileScope;
#[inline]
fn deref(&self) -> &Self::Target { self.scope.as_ref().unwrap() }
}
/// Defines a scope within a ProfileReport.
#[derive(Debug, Deserialize, Serialize)]
pub struct ProfileScope {
/// The name of the scope.
name: String,
/// The timings in this scope.
timings: Mutex<Vec<ProfileTiming>>,
}
impl ProfileScope {
/// Constructor for the ProfileScope.
///
/// # Arguments
/// - `name`: The name of the ProfileScope.
///
/// # Returns
/// A new ProfileScope instance.
pub fn new(name: impl Into<String>) -> Self { Self { name: name.into(), timings: Mutex::new(vec![]) } }
/// Returns a TimerGuard, which takes a time exactly as long as it is in scope.
///
/// # Arguments
/// - `name`: The name to set for this Timing.
///
/// # Returns
/// A new Timer struct to take a timing.
pub fn time(&self, name: impl Into<String>) -> TimerGuard {
// Get a lock
let mut lock: MutexGuard<Vec<ProfileTiming>> = self.timings.lock();
// Create the entry
lock.push(ProfileTiming::Timing(name.into(), Arc::new(Mutex::new(Timing::none()))));
// Create a TimerGuard around that timing.
let timing: Arc<Mutex<Timing>> = lock.last().unwrap().timing().clone();
TimerGuard { start: Instant::now(), timing, _lifetime: Default::default() }
}
/// Profiles the given function and adds its timing under the given name.
///
/// # Arguments
/// - `name`: The name to set for this Timing.
/// - `func`: The function to profile.
///
/// # Returns
/// The result of the function, if any.
pub fn time_func<R>(&self, name: impl Into<String>, func: impl FnOnce() -> R) -> R {
// Time the function
let start: Instant = Instant::now();
let res: R = func();
let end: Timing = start.elapsed().into();
// Add the timing internally
let mut lock: MutexGuard<Vec<ProfileTiming>> = self.timings.lock();
lock.push(ProfileTiming::Timing(name.into(), Arc::new(Mutex::new(end))));
// Return the result
res
}
/// Profiles the given future by creating a future that times it while running.
///
/// # Arguments
/// - `name`: The name to set for this Timing.
/// - `fut`: The Future to profile.
///
/// # Returns
/// A future that returns the same result as the given, but times its execution as a side-effect.
pub fn time_fut<'s, R>(&'s self, name: impl Into<String>, fut: impl 's + Future<Output = R>) -> impl 's + Future<Output = R> {
let name: String = name.into();
// Before we begin, we add the timing to respect the ordering
let timing: Arc<Mutex<Timing>> = {
let mut lock: MutexGuard<Vec<ProfileTiming>> = self.timings.lock();
lock.push(ProfileTiming::Timing(name, Arc::new(Mutex::new(Timing::none()))));
lock.last().unwrap().timing().clone()
};
// Now profile the future
async move {
// Time the future
let start: Instant = Instant::now();
let res: R = fut.await;
let end: Timing = start.elapsed().into();
// Add the timing internally
let mut lock: MutexGuard<Timing> = timing.lock();
*lock = end;
// Return the result
res
}
}
/// Returns a new ProfileScope that can be used to do more elaborate nested timings.
///
/// # Arguments
/// - `name`: The name of the new scope.
///
/// # Returns
/// A new ProfileScope that can be used to take timings.
pub fn nest(&self, name: impl Into<String>) -> ProfileScopeHandle {
// Create the new scope
let scope: Self = Self::new(name);
// Insert it internally
let mut lock: MutexGuard<Vec<ProfileTiming>> = self.timings.lock();
lock.push(ProfileTiming::Scope(Arc::new(scope)));
// Return a weak reference to it
ProfileScopeHandle { scope: lock.last().unwrap().scope().clone(), _lifetime: Default::default() }
}
/// Profiles the given function, but provides it with extra profile options by giving it its own ProfileScope to populate.
///
/// Note that the ProfileScope is already automatically given a "total"-timing, representing the function's profiling. This is still untimed as long as the function sees it, obviously.
///
/// # Arguments
/// - `name`: The name to set for this Timing.
/// - `func`: The function to profile.
///
/// # Returns
/// The result of the function, if any.
pub fn nest_func<R>(&self, name: impl Into<String>, func: impl FnOnce(ProfileScopeHandle) -> R) -> R {
// Create a new scope
let scope: ProfileScopeHandle = self.nest(name);
// Add an entry for the scope
let timing: Arc<Mutex<Timing>> = {
let mut lock: MutexGuard<Vec<ProfileTiming>> = scope.timings.lock();
lock.push(ProfileTiming::Timing("total".into(), Arc::new(Mutex::new(Timing::none()))));
lock.last().unwrap().timing().clone()
};
// Time the function
let start: Instant = Instant::now();
let res: R = func(scope);
let end: Timing = start.elapsed().into();
// Set that time
let mut lock: MutexGuard<Timing> = timing.lock();
*lock = end;
// Return the result
res
}
/// Profiles the given future by creating a future that times it while running, but provides it with extra profile options by giving it its own ProfileScope to popupate.
///
/// Note that the ProfileScope is already automatically given a "total"-timing, representing the future's profiling. This is still untimed as long as the future sees it, obviously.
///
/// # Arguments
/// - `name`: The name to set for this Timing.
/// - `fut`: The Future to profile.
///
/// # Returns
/// A future that returns the same result as the given, but times its execution as a side-effect.
pub fn nest_fut<'s, F: Future>(
&'s self,
name: impl Into<String>,
fut: impl 's + FnOnce(ProfileScopeHandle<'s>) -> F,
) -> impl 's + Future<Output = F::Output> {
let name: String = name.into();
// Create a new scope
let scope: ProfileScopeHandle = self.nest(name);
// Add an entry for the scope
let timing: Arc<Mutex<Timing>> = {
let mut lock: MutexGuard<Vec<ProfileTiming>> = scope.timings.lock();
lock.push(ProfileTiming::Timing("total".into(), Arc::new(Mutex::new(Timing::none()))));
lock.last().unwrap().timing().clone()
};
// Now profile the future
async move {
// Time the future
let start: Instant = Instant::now();
let res: F::Output = fut(scope).await;
let end: Timing = start.elapsed().into();
// Add the timing internally
let mut lock: MutexGuard<Timing> = timing.lock();
*lock = end;
// Return the result
res
}
}
/// Returns a formatter that neatly displays the results of this scope.
///
/// Note that this does _not_ end with a newline, so typically you want to call `writeln!()`/`println!()` on this.
///
/// # Returns
/// A new ProfileScopeFormatter.
#[inline]
pub fn display(&self) -> ProfileScopeFormatter { ProfileScopeFormatter { scope: self, indent: 0 } }
/// Returns a formatter that neatly displays the results of this scope with a given number of spaces before each line.
///
/// Note that this does _not_ end with a newline, so typically you want to call `writeln!()`/`println!()` on this.
///
/// # Arguments
/// - `indent`: The number of spaces to print before each line.
///
/// # Returns
/// A new ProfileScopeFormatter.
#[inline]
pub fn display_indented(&self, indent: usize) -> ProfileScopeFormatter { ProfileScopeFormatter { scope: self, indent } }
}