1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
// AST.rs
// by Lut99
//
// Created:
// 30 Aug 2022, 11:55:49
// Last edited:
// 06 Feb 2024, 11:38:29
// Auto updated?
// Yes
//
// Description:
//! Defines the `brane-ast` AST, which is defined as an acyclic* graph
//! where the nodes are external, orchestratable and policy-sensitive
//! tasks (e.g., compute tasks or transfer tasks), and the edges are
//! 'control flow' that are small pieces of BraneScript that decide
//! which task to compute next. Can be thought of as a graph with
//! intelligent edges.
//
use std::collections::{HashMap, HashSet};
use std::fmt::{Display, Formatter, Result as FResult};
use std::hash::Hash;
use std::sync::Arc;
use brane_dsl::spec::MergeStrategy;
use enum_debug::EnumDebug;
use rand::Rng as _;
use rand::distributions::Alphanumeric;
use serde::de::{self, Deserializer, Visitor};
use serde::ser::Serializer;
use serde::{Deserialize, Serialize};
use serde_json_any_key::any_key_map;
use specifications::data::{AvailabilityKind, DataName};
use specifications::package::Capability;
use specifications::version::Version;
use crate::data_type::DataType;
use crate::func_id::FunctionId;
use crate::locations::{Location, Locations};
/***** CONSTANTS *****/
lazy_static!(
/// A static FunctionDef for main.
pub static ref MAIN_FUNC: FunctionDef = FunctionDef { name: "<main>".into(), args: vec![], ret: DataType::Void };
/// A static FunctionDef for the Transfer.
pub static ref TRANSFER_FUNC: FunctionDef = FunctionDef{ name: "transfer".into(), args: vec![ DataType::Data, DataType::Data ], ret: DataType::Void };
);
/***** HELPER FUNCTIONS *****/
/// Generates a random workflow ID.
///
/// # Returns
/// A string of the form `workflow-XXXXXXXX`, where `XXXXXXXX` are eight random alphanumeric characters.
#[inline]
fn generate_random_workflow_id() -> String {
format!("workflow-{}", rand::thread_rng().sample_iter(Alphanumeric).take(8).map(char::from).collect::<String>())
}
/***** TOPLEVEL *****/
/// Defines a Workflow, which is meant to be an 'executable but reasonable' graph.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct Workflow {
/// Some ID of this workflow.
pub id: String,
/// The global symbol / definition table. This specific table is also affectionally referred to as the "Workflow table".
pub table: Arc<SymTable>,
/// Toplevel metadata
pub metadata: Arc<HashSet<Metadata>>,
/// Whomst've ever submitted the workflow (as a string identifier).
pub user: Arc<Option<String>>,
/// Implements the graph. Note that the ordering of this graph is important, but it will not be executed linearly.
pub graph: Arc<Vec<Edge>>,
/// Contains the parts of the graph that are callable.
pub funcs: Arc<HashMap<usize, Vec<Edge>>>,
}
impl Workflow {
/// Constructor for the Workflow that initializes it to the given contents.
///
/// # Arguments
/// - `id`: Some identifier for this workflow.
/// - `table`: The DefTable that contains the definitions in this workflow.
/// - `graph`: The main edges that compose this Workflow.
/// - `funcs`: Auxillary edges that provide a kind of function-like paradigm to the edges.
///
/// # Returns
/// A new Workflow instance.
#[inline]
pub fn new(id: String, table: SymTable, graph: Vec<Edge>, funcs: HashMap<usize, Vec<Edge>>) -> Self {
Self { id, table: Arc::new(table), metadata: Arc::new(HashSet::new()), user: Arc::new(None), graph: Arc::new(graph), funcs: Arc::new(funcs) }
}
/// Constructor for the Workflow that initializes it to the given contents, but generates a random ID.
///
/// # Arguments
/// - `table`: The DefTable that contains the definitions in this workflow.
/// - `graph`: The main edges that compose this Workflow.
/// - `funcs`: Auxillary edges that provide a kind of function-like paradigm to the edges.
///
/// # Returns
/// A new Workflow instance with a random ID.
#[inline]
pub fn with_random_id(table: SymTable, graph: Vec<Edge>, funcs: HashMap<usize, Vec<Edge>>) -> Self {
Self {
id: generate_random_workflow_id(),
table: Arc::new(table),
metadata: Arc::new(HashSet::new()),
user: Arc::new(None),
graph: Arc::new(graph),
funcs: Arc::new(funcs),
}
}
// /// Returns the edge pointed to by the given PC.
// ///
// /// # Arguments
// /// - `pc`: The position of the Edge to return. Given as a pair of `(function index, edge index in that function)`, where a function index of `usize::MAX` means it's the main script function.
// ///
// /// # Returns
// /// A reference to the Edge pointed to by the given PC.
// ///
// /// # Panics
// /// This function panics if either part of the `pc` is out-of-bounds _and_ the function index is not `usize::MAX`.
// #[inline]
// pub fn edge(&self, pc: (usize, usize)) -> &Edge {
// if pc.0 == usize::MAX {
// // Main
// if pc.1 >= self.graph.len() {
// panic!("Edge index {} is out-of-bounds for main function of {} edges", pc.1, self.graph.len());
// }
// &self.graph[pc.1]
// } else {
// // It's a function
// match self.funcs.get(&pc.0) {
// Some(graph) => {
// if pc.1 >= graph.len() {
// panic!("Edge index {} is out-of-bounds for function '{}' of {} edges", pc.1, self.table.funcs[pc.0].name, graph.len());
// }
// &graph[pc.1]
// },
// None => {
// panic!("Function index {} is unknown", pc.0);
// },
// }
// }
// }
}
impl Default for Workflow {
#[inline]
fn default() -> Self {
Self {
id: generate_random_workflow_id(),
table: Arc::new(SymTable::new()),
metadata: Arc::new(HashSet::new()),
user: Arc::new(None),
graph: Arc::new(vec![]),
funcs: Arc::new(HashMap::new()),
}
}
}
/// Defines a piece of metadata.
#[derive(Clone, Debug, Eq)]
pub struct Metadata {
/// The owner of the tag, effectively namespacing it.
pub owner: String,
/// The tag that is attached.
pub tag: String,
/// Some signature verifying this metadata. Given as a pair of the person signing it and the signature itself.
pub signature: Option<(String, String)>,
}
impl Hash for Metadata {
#[inline]
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
// We're only counting the owner and the tag in the signature
self.owner.hash(state);
self.owner.hash(state);
}
}
impl PartialEq for Metadata {
#[inline]
fn eq(&self, other: &Self) -> bool { self.owner == other.owner && self.tag == other.tag }
}
impl<'de> Deserialize<'de> for Metadata {
#[inline]
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
/// The visitor for the Metadata
struct MetadataVisitor;
impl<'de> Visitor<'de> for MetadataVisitor {
type Value = Metadata;
#[inline]
fn expecting(&self, f: &mut Formatter) -> FResult { write!(f, "an `owner.tag` pair") }
#[inline]
fn visit_str<E>(self, mut v: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
// Check if there is a signature or not
let signature: Option<(String, String)> = if let Some(hash_pos) = v.find('#') {
// Split on the hash_pos
let sign: &str = &v[hash_pos + 1..];
v = &v[..hash_pos];
// Attempt to find the dot
let dot_pos: usize = match v.find('.') {
Some(pos) => pos,
None => return Err(E::custom(format!("no dot ('.') found in tag/owner pair '{v}'"))),
};
Some((sign[..dot_pos].into(), sign[dot_pos + 1..].into()))
} else {
None
};
// Find the position of the owner/tag
let dot_pos: usize = match v.find('.') {
Some(pos) => pos,
None => return Err(E::custom(format!("no dot ('.') found in tag/owner pair '{v}'"))),
};
let owner: String = v[..dot_pos].into();
let tag: String = v[dot_pos + 1..].into();
// OK, construct ourselves
Ok(Metadata { owner, tag, signature })
}
}
// Visit the visitor
deserializer.deserialize_str(MetadataVisitor)
}
}
impl Serialize for Metadata {
#[inline]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(&format!(
"{}.{}{}",
self.owner,
self.tag,
if let Some((assigner, signature)) = &self.signature { format!("#{assigner}.{signature}") } else { String::new() }
))
}
}
/// Defines the SymTable, which is like a symbol table (very much so, even) but now specific to Workflowland.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct SymTable {
/// Lists all edge functions used in the Workflow.
pub funcs: Vec<FunctionDef>,
/// Lists all tasks used in the workflow.
pub tasks: Vec<TaskDef>,
/// Lists all classes used in the Workflow.
pub classes: Vec<ClassDef>,
/// Lists _only_ toplevel / global variables used in the Workflow. Any in-function variables will be kept in the function itself.
pub vars: Vec<VarDef>,
/// Lists intermediate results defined in this workflow and maps them to where to find them (the name of the location).
pub results: HashMap<String, String>,
}
impl SymTable {
/// Constructor for the SymTable that initializes it to empty.
///
/// # Returns
/// A new SymTable instance.
#[inline]
pub fn new() -> Self {
Self {
funcs: Vec::new(),
tasks: Vec::new(),
classes: Vec::new(),
vars: Vec::new(),
results: HashMap::new(),
}
}
/// Constructor for the SymTable that takes the given vectors instead.
///
/// # Arguments
/// - `funcs`: A vector of `FunctionDef`initions that defines all functions in the table.
/// - `tasks`: A vector of `TaskDef`initions that defines all _external_ functions in the table.
/// - `classes`: A vector of `ClassDef`initions that defines all classes in the table.
/// - `vars`: A vector of `VarDef`initions that defines all variable in the table.
/// - `results`: A map with the intermediate results (as `String`, `PathBuf` pairs).
///
/// # Returns
/// A new SymTable instance with the given definitions already added.
#[inline]
pub fn with(funcs: Vec<FunctionDef>, tasks: Vec<TaskDef>, classes: Vec<ClassDef>, vars: Vec<VarDef>, results: HashMap<String, String>) -> Self {
Self { funcs, tasks, classes, vars, results }
}
/// Returns the function with the given index, if any.
///
/// # Arguments
/// - `id`: The ID/index of the function to get the compile state of.
///
/// # Returns
/// A reference to the corresponding [`FunctionDef`].
///
/// # Panics
/// This function may panic if `id` is out-of-bounds.
#[inline]
pub fn func(&self, id: FunctionId) -> &FunctionDef {
match id {
FunctionId::Main => &MAIN_FUNC,
FunctionId::Func(id) => {
if id < self.funcs.len() {
&self.funcs[id]
} else {
panic!("Given function ID '{}' is out-of-bounds for SymTable with {} functions", id, self.funcs.len());
}
},
}
}
/// Returns the task with the given index, if any.
///
/// # Arguments
/// - `id`: The ID/index of the task to get the compile state of.
///
/// # Returns
/// A reference to the corresponding [`TaskDef`].
///
/// # Panics
/// This function may panic if `id` is out-of-bounds.
#[inline]
pub fn task(&self, id: usize) -> &TaskDef {
if id >= self.tasks.len() {
panic!("Given task ID '{}' is out-of-bounds for SymTable with {} tasks", id, self.tasks.len());
}
&self.tasks[id]
}
/// Returns the class with the given index, if any.
///
/// # Arguments
/// - `id`: The ID/index of the class to get the compile state of.
///
/// # Returns
/// A reference to the corresponding [`ClassDef`].
///
/// # Panics
/// This function may panic if `id` is out-of-bounds.
#[inline]
pub fn class(&self, id: usize) -> &ClassDef {
if id >= self.classes.len() {
panic!("Given class ID '{}' is out-of-bounds for SymTable with {} classes", id, self.classes.len());
}
&self.classes[id]
}
/// Returns the variable with the given index, if any.
///
/// # Arguments
/// - `id`: The ID/index of the variable to get the compile state of.
///
/// # Returns
/// A reference to the corresponding [`VarDef`].
///
/// # Panics
/// This function may panic if `id` is out-of-bounds.
#[inline]
pub fn var(&self, id: usize) -> &VarDef {
if id >= self.vars.len() {
panic!("Given variable ID '{}' is out-of-bounds for SymTable with {} variables", id, self.vars.len());
}
&self.vars[id]
}
}
impl Default for SymTable {
#[inline]
fn default() -> Self { Self::new() }
}
/// Defines a function that is referenced in the edges.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct FunctionDef {
/// The name of the function.
#[serde(rename = "n")]
pub name: String,
/// The types of the (and the number of) arguments.
#[serde(rename = "a")]
pub args: Vec<DataType>,
/// The return type of the function.
#[serde(rename = "r")]
pub ret: DataType,
}
/// Defines a Task (i.e., a Node) in the Workflow graph.
#[derive(Clone, Debug, Deserialize, EnumDebug, Serialize)]
#[serde(tag = "kind")]
pub enum TaskDef {
/// Defines a compute task, i.e., a task that is externally called.
#[serde(rename = "cmp")]
Compute(ComputeTaskDef),
/// Defines a transfer task, i.e., a data transfer between two domains.
#[serde(rename = "trf")]
Transfer,
}
impl TaskDef {
/// Returns the name of the TaskDef.
#[inline]
pub fn name(&self) -> &str {
use TaskDef::*;
match self {
Compute(def) => &def.function.name,
Transfer => &TRANSFER_FUNC.name,
}
}
/// Returns the function definition for this TaskDef.
#[inline]
pub fn func(&self) -> &FunctionDef {
use TaskDef::*;
match self {
Compute(def) => &def.function,
Transfer => &TRANSFER_FUNC,
}
}
}
/// Defines the contents of a compute task.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct ComputeTaskDef {
/// The name of the package that this task belongs to.
#[serde(rename = "p")]
pub package: String,
/// The version of the package that this task belongs to.
#[serde(rename = "v")]
pub version: Version,
/// The definition of the function that this package implements.
#[serde(rename = "d")]
pub function: Box<FunctionDef>,
/// A list of names for every argument.
#[serde(rename = "a")]
pub args_names: Vec<String>,
/// Any requirements required for this task.
#[serde(rename = "r")]
pub requirements: HashSet<Capability>,
}
/// Defines a class that is referenced in the edges.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct ClassDef {
/// The name of the class.
#[serde(rename = "n")]
pub name: String,
/// If this class was external, the name of the package.
#[serde(rename = "i")]
pub package: Option<String>,
/// The version of the package that this class belongs to.
#[serde(rename = "v")]
pub version: Option<Version>,
/// The properties in this class.
#[serde(rename = "p")]
pub props: Vec<VarDef>,
/// The methods in this class. Note that these are references, since they are actually defined in the class.
#[serde(rename = "m")]
pub methods: Vec<usize>,
}
/// Defines a variable that is referenced in the edges.
#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct VarDef {
/// The name of the variable.
#[serde(rename = "n")]
pub name: String,
/// The type of the variable.
#[serde(rename = "t")]
pub data_type: DataType,
}
/***** EDGES *****/
/// Defines an Edge (i.e., an intelligent control-flow operation) in the Workflow graph.
///
/// Is also referred to as an 'Edge' for historical reasons and because almost all of the elements are edge variants. In fact, the only Node is 'Node', which is why the rest doesn't explicitly mentions it being an edge.
///
/// The edges can be thought of as a linked list of statements. However, each statement may secretly group multiple statements (instrucitons) to make reasoning about the graph easier.
///
/// Finally, the developers would like to formally apologize for completely butchering the term 'Edge'.
#[derive(Clone, Debug, Deserialize, EnumDebug, Serialize)]
#[serde(tag = "kind")]
pub enum Edge {
// Linear edges
/// A Node is an edge that runs a task. It has one input edge and one output edge.
#[serde(rename = "nod")]
Node {
/// The task to call
#[serde(rename = "t")]
task: usize,
/// An additional list that may or may not restrict locations.
#[serde(rename = "l")]
locs: Locations,
/// Annotation about where the task will be run. This is not meant to be populated by anyone except the planner.
#[serde(rename = "s")]
at: Option<Location>,
/// Reference to any input datasets/results that *might* be input to this node together with how they might be accessed. This latter part is populated during planning.
#[serde(rename = "i", with = "any_key_map")]
input: HashMap<DataName, Option<AvailabilityKind>>,
/// Reference to the result if this call generates one.
#[serde(rename = "r")]
result: Option<String>,
/// Metadata for this call
#[serde(rename = "m")]
metadata: HashSet<Metadata>,
/// The next edge to execute (usually the next one)
#[serde(rename = "n")]
next: usize,
},
/// A Linear edge is simple a series of instructions that are run, after which is goes to one new edge.
#[serde(rename = "lin")]
Linear {
/// The series of instructions to execute.
#[serde(rename = "i")]
instrs: Vec<EdgeInstr>,
/// The next edge to execute (usually the next one)
#[serde(rename = "n")]
next: usize,
},
/// A Stop is an edge that stops execution.
#[serde(rename = "stp")]
Stop {},
// Branching/joining edges
/// A Branching edge is an edge that branches into two possible (but disjoint) based on the result of a series of instructions.
///
/// # Stack layout
/// - Requires a boolean to be on top of the stack.
#[serde(rename = "brc")]
Branch {
/// The next edge to run if the condition returned 'true'. Is _not_ relative to the current program counter (i.e., if 0 is given, the first branch in the program is executed).
#[serde(rename = "t")]
true_next: usize,
/// The next edge to run if the condition returned 'false'. Is _not_ relative to the current program counter (i.e., if 0 is given, the first branch in the program is executed).
#[serde(rename = "f")]
false_next: Option<usize>,
/// The location where the branches will join together if the Branch does not fully return. This is only here for analysis purposes; it's not used by the VM.
#[serde(rename = "m")]
merge: Option<usize>,
},
// Note that we do not have a 'BranchNot'; this is to make reasoning easier.
/// A Parallel edge is an edge that branches into multiple branches that are all taken simultaneously.
#[serde(rename = "par")]
Parallel {
/// The edges that kickoff each branch. Is _not_ relative to the current program counter (i.e., if 0 is given, then the first branch in the program is executed).
#[serde(rename = "b")]
branches: Vec<usize>,
/// The location where the branches will merge together. This is only here for analysis purposes; it's not used by the VM.
#[serde(rename = "m")]
merge: usize,
},
/// A Join edge is an edge that joins multiple branches into one, waiting until all have been completed.
///
/// Note that the execution of the join-edge acts like a fence, so is quite non-trivial.
#[serde(rename = "join")]
Join {
/// Defines the merge strategy of the Join, i.e., how to combine the results of the branches together.
#[serde(rename = "m")]
merge: MergeStrategy,
/// The next edge to execute (usually the next one)
#[serde(rename = "n")]
next: usize,
},
// Looping edges
/// Repeats a given set of edges indefinitely.
#[serde(rename = "loop")]
Loop {
/// The edges that compute the condition.
#[serde(rename = "c")]
cond: usize,
/// The edges that are repeated for as long as the condition returns 'true'.
#[serde(rename = "b")]
body: usize,
/// The next edge to execute after the loop has been completed (usually the next one). Note, however, that this may be empty if the loop fully returns.
#[serde(rename = "n")]
next: Option<usize>,
},
// Calling edges
/// A Calling edge is one that re-uses edges by executing the given edge instead. When done, the 'next' edge is pushed on the frame stack and popped when a Return edge is executed.
///
/// # Stack layout
/// - Requires a Function object to be on top of the stack which will be called.
/// - Requires N arguments of arbitrary type, where N is equal to the function object's arity. The first argument of the function is at the bottom, the last second-to-top on the stack.
#[serde(rename = "cll")]
Call {
/// Reference to any input datasets/results that *might* be input to this node.
#[serde(rename = "i")]
input: HashSet<DataName>,
/// Reference to the result (or dataset) if this call generates one.
#[serde(rename = "r")]
result: HashSet<DataName>,
/// The next edge to execute (usually the next one)
#[serde(rename = "n")]
next: usize,
},
/// A Returning edge is one that returns from a called edge by popping the next from the call stack.
///
/// # Stack layout
/// - Optionally requires a value to be on the stack of the called function's return type. Whether or not this is need and which type that value has is determined by the top value on the frame stack.
#[serde(rename = "ret")]
Return {
/// If this return returns a value and that value is a Data, then this names which it is.
#[serde(rename = "r")]
result: HashSet<DataName>,
},
}
/// Defines an instruction for use within edges, which performs some computation in BraneScriptland (i.e., the edges).
#[derive(Clone, Debug, Deserialize, EnumDebug, Serialize)]
#[enum_debug(name)]
#[serde(tag = "kind")]
pub enum EdgeInstr {
// Stack operations
/// Casts the top value on the stack to another data type.
///
/// # Stack layout
/// - A value with a datatype casteable to the target on top of the stack.
#[serde(rename = "cst")]
Cast {
/// The target type to cast to.
#[serde(rename = "t")]
res_type: DataType,
},
/// Pops the top value of the stack without doing anything with it.
///
/// # Stack layout
/// - At least one value of any type on top of the stack.
#[serde(rename = "pop")]
Pop {},
/// Pushes a special, so-called PopMarker onto the stack. This is used to pop dynamically in the case expression return types are unresolved.
#[serde(rename = "mpp")]
PopMarker {},
/// A _special_ pop that attempts to pop intelligently based on the stack. This is required for unresolved function return values, where we don't know how if the function produced a value to remove.
///
/// Use `EdgeInstr::PopMarker` to push the marker onto the stack. It will be invisible for other operations.
///
/// # Stack layout
/// - At least one `PopMarker` value _somewhere_ on the stack. Anything up to there is popped.
#[serde(rename = "dpp")]
DynamicPop {},
// Optimized control-flow instructions
/// A branch instruction takes a branch if the top value on the stack is true.
///
/// # Stack layout
/// - A boolean value on top of the stack.
#[serde(rename = "brc")]
Branch {
/// The index of the flowstep where we jump to. Note that this address is actually relative to the _current_ (i.e., the branch's) program counter.
#[serde(rename = "n")]
next: i64,
},
/// The same as a branch, but now if the top value of the stack is false.
///
/// # Stack layout
/// - A boolean value on top of the stack.
#[serde(rename = "brn")]
BranchNot {
/// The index of the flowstep where we jump to. Note that this address is actually relative to the _current_ (i.e., the branch's) program counter.
#[serde(rename = "n")]
next: i64,
},
// Unary operators
/// The `!` operator (logical inversion)
///
/// # Stack layout
/// - A boolean value on top of the stack.
#[serde(rename = "not")]
Not {},
/// The `-` operator (negation)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack.
#[serde(rename = "neg")]
Neg {},
// Binary operators
/// The `&&` operator (logical and)
#[serde(rename = "and")]
And {},
/// The `||` operator (logical or)
#[serde(rename = "or")]
Or {},
/// The `+` operator (addition)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "add")]
Add {},
/// The `-` operator (subtraction)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "sub")]
Sub {},
/// The `*` operator (multiplication)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "mul")]
Mul {},
/// The `/` operator (division)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "div")]
Div {},
/// The '%' operator (modulo)
///
/// # Stack layout
/// - An integral value on top of the stack as the righthand-side.
/// - Another integral value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "mod")]
Mod {},
/// The `==` operator (equality)
///
/// # Stack layout
/// - An arbitrary value on top of the stack as the righthand-side.
/// - Another arbitrary value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "eq")]
Eq {},
/// The `!=` operator (not equal to)
///
/// # Stack layout
/// - An arbitrary value on top of the stack as the righthand-side.
/// - Another arbitrary value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "ne")]
Ne {},
/// The `<` operator (less than)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "lt")]
Lt {},
/// The `<=` operator (less than or equal to)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "le")]
Le {},
/// The `>` operator (greater than)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "gt")]
Gt {},
/// The `>=` operator (greater than or equal to)
///
/// # Stack layout
/// - A numeric (i.e., integral or real) value on top of the stack as the righthand-side.
/// - Another numeric value on second-to-top of the stack as the lefthand-side.
#[serde(rename = "ge")]
Ge {},
/// Groups the previous N values on the stack into an Array.
///
/// # Stack layout
/// - N elements on top of the stack of the same data type (stored in the Array instruction itself).
#[serde(rename = "arr")]
Array {
/// The number of elements.
#[serde(rename = "l")]
length: usize,
/// The data type of this Array ('Array' included)
#[serde(rename = "t")]
res_type: DataType,
},
/// Gets the i'th element of the top element on the stack (as an Array). Note that the array itself should be on the second-to-top value on the stack, and the index the top one.
///
/// # Stack layout
/// - An integral value on top of the stack that is the index.
/// - An array value on second-to-top of the stack that is indexed.
#[serde(rename = "arx")]
ArrayIndex {
/// The data type of this index expression
#[serde(rename = "t")]
res_type: DataType,
},
/// Pushes a new instance onto the stack. It uses the previous elements on there in reverse order.
///
/// # Stack layout
/// - N values of heterogeneous types on top of the stack that form the properties. They should be sorted alphabetically, with the most a-ish property on the bottom and the most z-ish property on the top.
#[serde(rename = "ins")]
Instance {
/// The signature of the instance we create.
#[serde(rename = "d")]
def: usize,
},
/// Projects/'indexes' the given instance with a certain field.
///
/// # Stack layout
/// - An instance-value to project on top of the stack.
#[serde(rename = "prj")]
Proj {
/// The name of the field to project.
#[serde(rename = "f")]
field: String,
},
/// Declares the given variable in the framestack.
///
/// It is a bit of an artificial instruction, mainly used to keep track of initialization status at runtime.
#[serde(rename = "vrd")]
VarDec {
/// The identifier of the variable to declare.
#[serde(rename = "d")]
def: usize,
},
/// Undeclares the given variable in the framestack.
///
/// It's a bit of an artificial instruction, mainly used to keep track of initialization status at runtime.
#[serde(rename = "vru")]
VarUndec {
/// The identifier of the variable to undeclare.
#[serde(rename = "d")]
def: usize,
},
/// Puts the value of the given variable on top of the stack.
///
/// # Stack layout
/// - A value on top of the stack of the same type as the variable referenced.
#[serde(rename = "vrg")]
VarGet {
/// The identifier of the variable.
#[serde(rename = "d")]
def: usize,
},
/// Pops the value on top of the stack to the given variable.
#[serde(rename = "vrs")]
VarSet {
/// The identifier of the variable.
#[serde(rename = "d")]
def: usize,
},
// Literals
/// Pushes a boolean value onto the stack.
#[serde(rename = "bol")]
Boolean {
/// The value of the Bbolean.
#[serde(rename = "v")]
value: bool,
},
/// Pushes an integral value onto the stack.
#[serde(rename = "int")]
Integer {
/// The value of the integer.
#[serde(rename = "v")]
value: i64,
},
/// Pushes a boolean value onto the stack.
#[serde(rename = "rel")]
Real {
/// The value of the real.
#[serde(rename = "v")]
value: f64,
},
/// Pushes a boolean value onto the stack.
#[serde(rename = "str")]
String {
/// The value of the string.
#[serde(rename = "v")]
value: String,
},
/// Pushes a function reference onto the stack.
#[serde(rename = "fnc")]
Function {
/// The reference to the function that is pushed on top of it.
#[serde(rename = "d")]
def: usize,
},
}
impl Display for EdgeInstr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> FResult {
use EdgeInstr::*;
match self {
Cast { .. } => write!(f, ".cast"),
Pop { .. } => write!(f, ".pop"),
PopMarker { .. } => write!(f, ".pop_marker"),
DynamicPop { .. } => write!(f, ".dpop"),
Branch { .. } => write!(f, ".brch"),
BranchNot { .. } => write!(f, ".nbrch"),
Not { .. } => write!(f, ".not"),
Neg { .. } => write!(f, ".neg"),
And { .. } => write!(f, ".and"),
Or { .. } => write!(f, ".or"),
Add { .. } => write!(f, ".add"),
Sub { .. } => write!(f, ".sub"),
Mul { .. } => write!(f, ".mul"),
Div { .. } => write!(f, ".div"),
Mod { .. } => write!(f, ".mod"),
Eq { .. } => write!(f, ".eq"),
Ne { .. } => write!(f, ".ne"),
Lt { .. } => write!(f, ".lt"),
Le { .. } => write!(f, ".le"),
Gt { .. } => write!(f, ".gt"),
Ge { .. } => write!(f, ".ge"),
Array { .. } => write!(f, ".arr"),
ArrayIndex { .. } => write!(f, ".arr_idx"),
Instance { .. } => write!(f, ".inst"),
Proj { .. } => write!(f, ".proj"),
VarDec { .. } => write!(f, ".dec"),
VarUndec { .. } => write!(f, ".undec"),
VarGet { .. } => write!(f, ".get"),
VarSet { .. } => write!(f, ".set"),
Boolean { .. } => write!(f, ".bool"),
Integer { .. } => write!(f, ".int"),
Real { .. } => write!(f, ".real"),
String { .. } => write!(f, ".str"),
Function { .. } => write!(f, ".func"),
}
}
}