1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
// PLANNER.rs
// by Lut99
//
// Created:
// 24 Oct 2022, 16:40:21
// Last edited:
// 31 Jan 2024, 14:47:01
// Auto updated?
// Yes
//
// Description:
//! A very trivial planner, that simple plans every dataset to run on
//! 'localhost'.
//
use std::collections::{HashMap, HashSet};
use std::mem;
use std::path::PathBuf;
use std::sync::Arc;
use brane_ast::Workflow;
use brane_ast::ast::{Edge, SymTable};
use brane_tsk::errors::PlanError;
use brane_tsk::spec::{LOCALHOST, Planner};
use log::debug;
use parking_lot::Mutex;
use specifications::data::{AccessKind, AvailabilityKind, DataIndex, DataName};
/***** HELPER FUNCTIONS *****/
/// Helper function that plans the given list of edges.
///
/// # Arguments
/// - `table`: The SymbolTable these edges live in.
/// - `edges`: The given list to plan.
/// - `dindex`: The DataIndex we use to resolve data references.
/// - `pc`: The started index for the program counter. Should be '0' when called manually, the rest is handled during recursion.
/// - `merge`: If given, then we will stop analysing once we reach that point.
/// - `deferred`: Whether or not to show errors when an intermediate result is not generated yet (false) or not (true).
/// - `done`: A list we use to keep track of edges we've already analyzed (to prevent endless loops).
///
/// # Returns
/// Nothing, but does change the given list.
///
/// # Errors
/// This function may error if the given list of edges was malformed (usually due to unknown or inaccessible datasets or results).
fn plan_edges(
table: &mut SymTable,
edges: &mut [Edge],
dindex: &Arc<DataIndex>,
pc: usize,
merge: Option<usize>,
deferred: bool,
done: &mut HashSet<usize>,
) -> Result<(), PlanError> {
// We cannot get away simply examining all edges in-order; we have to follow their execution structure
let mut pc: usize = pc;
while pc < edges.len() && (merge.is_none() || pc != merge.unwrap()) {
// Match on the edge to progress
let edge: &mut Edge = &mut edges[pc];
if done.contains(&pc) {
break;
}
done.insert(pc);
match edge {
// This is the node where it all revolves around, in the end
Edge::Node { task, at, input, result, next, .. } => {
// We simply assign all locations to localhost
*at = Some(LOCALHOST.into());
debug!("Task '{}' planned at '{}'", table.tasks[*task].name(), LOCALHOST);
// For all dataset/intermediate result inputs, we assert they are available on the local location
for (name, avail) in input {
OfflinePlanner::plan_data(name, avail, dindex, &table.results, deferred)?;
}
// Then, we make the intermediate result available at the location where the function is being run (if there is any)
if let Some(name) = result {
// Insert an entry in the list detailling where to access it and how
debug!("Making intermediate result '{}' accessible after execution of '{}' on '{}'", name, table.tasks[*task].name(), LOCALHOST);
table.results.insert(name.clone(), LOCALHOST.into());
}
// Finally, don't forget to move to the next one
pc = *next;
},
Edge::Linear { next, .. } => {
// Simply move to the next one
pc = *next;
},
Edge::Stop {} => {
// We've reached the end of the program
break;
},
Edge::Branch { true_next, false_next, merge } => {
// Dereference the numbers to dodge the borrow checker
let true_next: usize = *true_next;
let false_next: Option<usize> = *false_next;
let merge: Option<usize> = *merge;
// First analyse the true_next branch, until it reaches the merge (or quits)
plan_edges(table, edges, dindex, true_next, merge, deferred, done)?;
// If there is a false branch, do that one too
if let Some(false_next) = false_next {
plan_edges(table, edges, dindex, false_next, merge, deferred, done)?;
}
// If there is a merge, continue there; otherwise, we can assume that we've returned fully in the branch
if let Some(merge) = merge {
pc = merge;
} else {
break;
}
},
Edge::Parallel { branches, merge } => {
// Dereference the numbers to dodge the borrow checker
let branches: Vec<usize> = branches.clone();
let merge: usize = *merge;
// Analyse any of the branches
for b in branches {
// No merge needed since we can be safe in assuming parallel branches end with returns
plan_edges(table, edges, dindex, b, None, deferred, done)?;
}
// Continue at the merge
pc = merge;
},
Edge::Join { next, .. } => {
// Move to the next instruction (joins are not relevant for planning)
pc = *next;
},
Edge::Loop { cond, body, next, .. } => {
// Dereference the numbers to dodge the borrow checker
let cond: usize = *cond;
let body: usize = *body;
let next: Option<usize> = *next;
// Run the conditions and body in a first pass, with deferation enabled, to do as much as we can
plan_edges(table, edges, dindex, cond, Some(body), true, done)?;
plan_edges(table, edges, dindex, body, Some(cond), true, done)?;
// Then we run through the condition and body again to resolve any unknown things
plan_deferred(table, edges, cond, Some(body), &mut HashSet::new())?;
plan_deferred(table, edges, cond, Some(cond), &mut HashSet::new())?;
// When done, move to the next if there is any (otherwise, the body returns and then so can we)
if let Some(next) = next {
pc = next;
} else {
break;
}
},
Edge::Call { input: _, result: _, next } => {
// We can ignore calls for now, but...
// TODO: Check if this planning works across functions *screams*
pc = *next;
},
Edge::Return { result: _ } => {
// We will stop analysing here too, since we assume we have been called in recursion mode or something
break;
},
}
}
// // We can ignore the structure; we can get away simply examining the edges in-order
// for (i, e) in edges.iter_mut().enumerate() {
// if let Edge::Node{ task, at, input, result, .. } = e {
// debug!("Planning task '{}' (edge {})...", table.tasks[*task].name(), i);
// // We simply assign all locations to localhost
// *at = Some(LOCALHOST.into());
// debug!("Task '{}' planned at '{}'", table.tasks[*task].name(), LOCALHOST);
// // For all dataset/intermediate result inputs, we assert they are available on the local location
// for (name, avail) in input {
// OfflinePlanner::plan_data(name, avail, dindex, &table.results)?;
// }
// // Then, we make the intermediate result available at the location where the function is being run (if there is any)
// if let Some(name) = result {
// // Insert an entry in the list detailling where to access it and how
// debug!("Making intermediate result '{}' accessible after execution of '{}' on '{}'", name, table.tasks[*task].name(), LOCALHOST);
// table.results.insert(name.clone(), LOCALHOST.into());
// }
// }
// }
// Done
Ok(())
}
/// Helper function that populates the availability of results right after a first planning round, to catch those that needed to be deferred (i.e., loop variables).
///
/// # Arguments
/// - `table`: The SymbolTable these edges live in.
/// - `edges`: The given list to plan.
/// - `pc`: The started index for the program counter. Should be '0' when called manually, the rest is handled during recursion.
/// - `merge`: If given, then we will stop analysing once we reach that point.
///
/// # Returns
/// Nothing, but does change the given list.
///
/// # Errors
/// This function may error if there were still results that couldn't be populated even after we've seen all edges.
fn plan_deferred(table: &SymTable, edges: &mut [Edge], pc: usize, merge: Option<usize>, done: &mut HashSet<usize>) -> Result<(), PlanError> {
// We cannot get away simply examining all edges in-order; we have to follow their execution structure
let mut pc: usize = pc;
while pc < edges.len() && (merge.is_none() || pc != merge.unwrap()) {
// Match on the edge to progress
let edge: &mut Edge = &mut edges[pc];
if done.contains(&pc) {
break;
}
done.insert(pc);
match edge {
// This is the node where it all revolves around, in the end
Edge::Node { input, next, .. } => {
// This next trick involves checking if the node has any unresolved results as input, then trying to resolve them
for (name, avail) in input {
// Continue if it already has a resolved availability
if avail.is_some() {
continue;
}
// Get the name of the result
if let DataName::IntermediateResult(name) = name {
// We have to know of it, i.e., it has to be declared somewhere where it makes sense
if let Some(loc) = table.results.get(name) {
// Match on whether it is available locally or not
if LOCALHOST == loc {
debug!("Input intermediate result '{}' is locally available", name);
*avail = Some(AvailabilityKind::Available { how: AccessKind::File { path: PathBuf::from(name) } });
} else {
// We don't download, so always unavailable
return Err(PlanError::IntermediateResultUnavailable { name: name.clone(), locs: vec![] });
}
} else {
return Err(PlanError::UnknownIntermediateResult { name: name.clone() });
}
} else {
panic!("Should never see an unresolved Data in the workflow");
}
}
// Finally, don't forget to move to the next one
pc = *next;
},
Edge::Linear { next, .. } => {
// Simply move to the next one
pc = *next;
},
Edge::Stop {} => {
// We've reached the end of the program
break;
},
Edge::Branch { true_next, false_next, merge } => {
// Dereference the numbers to dodge the borrow checker
let true_next: usize = *true_next;
let false_next: Option<usize> = *false_next;
let merge: Option<usize> = *merge;
// First analyse the true_next branch, until it reaches the merge (or quits)
plan_deferred(table, edges, true_next, merge, done)?;
// If there is a false branch, do that one too
if let Some(false_next) = false_next {
plan_deferred(table, edges, false_next, merge, done)?;
}
// If there is a merge, continue there; otherwise, we can assume that we've returned fully in the branch
if let Some(merge) = merge {
pc = merge;
} else {
break;
}
},
Edge::Parallel { branches, merge } => {
// Dereference the numbers to dodge the borrow checker
let branches: Vec<usize> = branches.clone();
let merge: usize = *merge;
// Analyse any of the branches
for b in branches {
// No merge needed since we can be safe in assuming parallel branches end with returns
plan_deferred(table, edges, b, None, done)?;
}
// Continue at the merge
pc = merge;
},
Edge::Join { next, .. } => {
// Move to the next instruction (joins are not relevant for planning)
pc = *next;
},
Edge::Loop { cond, body, next, .. } => {
// Dereference the numbers to dodge the borrow checker
let cond: usize = *cond;
let body: usize = *body;
let next: Option<usize> = *next;
// We only have to analyse further deferrence; the actual planning should have been done before `plan_deferred()` is called
plan_deferred(table, edges, cond, Some(body), done)?;
plan_deferred(table, edges, cond, Some(cond), done)?;
// When done, move to the next if there is any (otherwise, the body returns and then so can we)
if let Some(next) = next {
pc = next;
} else {
break;
}
},
Edge::Call { input: _, result: _, next } => {
// We can ignore calls for now, but...
// TODO: Check if this planning works across functions *screams*
pc = *next;
},
Edge::Return { result: _ } => {
// We will stop analysing here too, since we assume we have been called in recursion mode or something
break;
},
}
}
// Done
Ok(())
}
/***** LIBRARY *****/
/// The planner is in charge of assigning locations to tasks in a workflow. This one is very simple, assigning 'localhost' to whatever it sees.
#[derive(Debug)]
pub struct OfflinePlanner {
/// The local data index to resolve datasets with.
data_index: Arc<DataIndex>,
/// The results we planned last time (or whatever).
pub results: Arc<Mutex<HashMap<String, String>>>,
}
impl OfflinePlanner {
/// Constructor for the OfflinePlanner.
///
/// # Arguments
/// - `data_index`: The DataIndex that is used to resolve datasets at plantime.
/// - `results`: A map of results to where they are, which we planned last time around.
///
/// # Returns
/// A new OfflinePlanner instance.
#[inline]
pub fn new(data_index: Arc<DataIndex>, results: Arc<Mutex<HashMap<String, String>>>) -> Self { Self { data_index, results } }
/// Plans the given task offline.
///
/// # Arguments
/// - `name`: The name of the dataset or intermediate result, as a DataName (so we can distinguish between the two).
/// - `avail`: The availability for this dataset that we will be updating.
/// - `dindex`: The DataIndex we use to see what datasets are actually available where.
/// - `results`: The map of results that are known in this workflow.
/// - `deferred`: If `true`, then will not error if we failed to find a result yet (its declaration might come later, in that case).
///
/// # Returns
/// Nothing, but does change the dataset's availability.
pub fn plan_data(
name: &DataName,
avail: &mut Option<AvailabilityKind>,
dindex: &Arc<DataIndex>,
results: &HashMap<String, String>,
deferred: bool,
) -> Result<(), PlanError> {
match name {
DataName::Data(name) => {
if let Some(info) = dindex.get(name) {
// Check if it is local or remote
if let Some(access) = info.access.get(LOCALHOST) {
debug!("Input dataset '{}' is locally available", name);
*avail = Some(AvailabilityKind::Available { how: access.clone() });
} else {
// We don't download, so always unavailable
return Err(PlanError::DatasetUnavailable { name: name.clone(), locs: vec![] });
}
} else {
return Err(PlanError::UnknownDataset { name: name.clone() });
}
},
DataName::IntermediateResult(name) => {
// We have to know of it, i.e., it has to be declared somewhere where it makes sense
if let Some(loc) = results.get(name) {
// Match on whether it is available locally or not
if LOCALHOST == loc {
debug!("Input intermediate result '{}' is locally available", name);
*avail = Some(AvailabilityKind::Available { how: AccessKind::File { path: PathBuf::from(name) } });
} else {
// We don't download, so always unavailable
return Err(PlanError::IntermediateResultUnavailable { name: name.clone(), locs: vec![] });
}
} else if !deferred {
return Err(PlanError::UnknownIntermediateResult { name: name.clone() });
} else {
debug!("Input intermediate result '{}' is not yet available, but it might be later (deferred)", name);
}
},
}
// Done
Ok(())
}
}
#[async_trait::async_trait]
impl Planner for OfflinePlanner {
async fn plan(&self, workflow: brane_ast::Workflow) -> Result<Workflow, PlanError> {
let mut workflow = workflow;
// Get the symbol table muteable, so we can... mutate... it
let mut table: Arc<SymTable> = Arc::new(SymTable::new());
mem::swap(&mut workflow.table, &mut table);
let mut table: SymTable = Arc::try_unwrap(table).unwrap();
// Update the table with results from last time 'round
table.results.extend(self.results.lock().iter().map(|(k, v)| (k.clone(), v.clone())));
// Do the main edges first
{
// Start by getting a list of all the edges
let mut edges: Arc<Vec<Edge>> = Arc::new(vec![]);
mem::swap(&mut workflow.graph, &mut edges);
let mut edges: Vec<Edge> = Arc::try_unwrap(edges).unwrap();
// Plan them
debug!("Planning main edges...");
plan_edges(&mut table, &mut edges, &self.data_index, 0, None, false, &mut HashSet::new())?;
// Move the edges back
let mut edges: Arc<Vec<Edge>> = Arc::new(edges);
mem::swap(&mut edges, &mut workflow.graph);
}
// Then we do the function edges
{
// Start by getting the map
let mut funcs: Arc<HashMap<usize, Vec<Edge>>> = Arc::new(HashMap::new());
mem::swap(&mut workflow.funcs, &mut funcs);
let mut funcs: HashMap<usize, Vec<Edge>> = Arc::try_unwrap(funcs).unwrap();
// Iterate through all of the edges
for (idx, edges) in &mut funcs {
debug!("Planning '{}' edges...", table.funcs[*idx].name);
plan_edges(&mut table, edges, &self.data_index, 0, None, false, &mut HashSet::new())?;
}
// Put the map back
let mut funcs: Arc<HashMap<usize, Vec<Edge>>> = Arc::new(funcs);
mem::swap(&mut funcs, &mut workflow.funcs);
}
// Flush the results back to the internal results table
self.results.lock().clone_from(&table.results);
// Then, put the table back
let mut table: Arc<SymTable> = Arc::new(table);
mem::swap(&mut table, &mut workflow.table);
// Done
debug!("Planning success");
Ok(workflow)
}
}