1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
// EDGEBUFFER.rs
// by Lut99
//
// Created:
// 05 Sep 2022, 09:27:32
// Last edited:
// 02 Nov 2023, 14:25:07
// Auto updated?
// Yes
//
// Description:
//! Implements an EdgeBuffer, which is a structure we use to write Edges
//! during compilation.
//
use std::borrow::Cow;
use std::cell::{Ref, RefCell, RefMut};
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
use std::mem;
use std::rc::Rc;
use brane_dsl::spec::MergeStrategy;
use crate::ast::Edge;
/***** TESTS *****/
#[cfg(test)]
mod tests {
use super::*;
/// Tests whether the EdgeBuffer creates linked lists as expected.
#[test]
fn test_edgebuffer() {
// Create a new edgebuffer
let mut edges1: EdgeBuffer = EdgeBuffer::new();
// Write a couple of things
edges1.write(Edge::Linear { instrs: vec![], next: usize::MAX });
edges1.write(Edge::Linear { instrs: vec![], next: usize::MAX });
edges1.write(Edge::Linear { instrs: vec![], next: usize::MAX });
edges1.write_stop(Edge::Return { result: HashSet::new() });
// Test if it's valid
let mut node: Option<EdgeBufferNodePtr> = edges1.start().clone();
let mut i = 0;
while node.is_some() {
// Make sure this node is what we expect from it
if i >= 0 && i <= 2 {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
if let Edge::Linear { .. } = &n.edge {
} else {
panic!("{}: Encountered non-linear edge '{:?}'", i, n.edge);
}
} else if i == 3 {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
if let Edge::Return { .. } = &n.edge {
} else {
panic!("{}: Encountered non-return edge '{:?}'", i, n.edge);
}
} else {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
panic!("{}: Encountered unexpected edge '{:?}' (too many)", i, n.edge);
}
// Move to the next
node = node.unwrap().borrow().next();
i += 1;
}
if i < 4 {
panic!("Encountered not enough edges (got {}, expected {})", i, 4);
}
// Create another buffer with a branch in it
let mut edges2: EdgeBuffer = EdgeBuffer::new();
// Write a couple of things
edges2.write(Edge::Linear { instrs: vec![], next: usize::MAX });
edges2.write_branch(Some(edges1), None);
// Note the branch introduces an implicit linear to which it writes
edges2.write(Edge::Linear { instrs: vec![], next: usize::MAX });
edges2.write_stop(Edge::Stop {});
// Test if it's valid
let mut node: Option<EdgeBufferNodePtr> = edges2.start().clone();
let mut i = 0;
while node.is_some() {
// Make sure this node is what we expect from it
if i == 0 || i == 2 || i == 3 {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
if let Edge::Linear { .. } = &n.edge {
} else {
panic!("{}: Encountered non-linear edge '{:?}'", i, n.edge);
}
} else if i == 1 {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
if let Edge::Branch { .. } = &n.edge {
} else {
panic!("{}: Encountered non-branch edge '{:?}'", i, n.edge);
}
} else if i == 4 {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
if let Edge::Stop {} = &n.edge {
} else {
panic!("{}: Encountered non-stop edge '{:?}'", i, n.edge);
}
} else {
let n: Ref<EdgeBufferNode> = node.as_ref().unwrap().borrow();
panic!("{}: Encountered unexpected edge '{:?}' (too many)", i, n.edge);
}
// Move to the next
node = node.unwrap().borrow().next();
i += 1;
}
if i < 5 {
panic!("Encountered not enough edges (got {}, expected {})", i, 5);
}
}
}
/***** AUXILLARY *****/
/// Defines how one node links to the next and should thus be traversed.
#[derive(Clone, Debug)]
pub enum EdgeBufferNodeLink {
/// It's a simple, linear link.
Linear(EdgeBufferNodePtr),
/// It's a branching link (i.e., two options).
///
/// # Layout
/// - `0`: The edges that represent the true-branch if there is any.
/// - `1`: The edges that represent the false-branch if there is any.
/// - `2`: The edges that represent the joining edge, i.e., the first one _after_ the branch. If there is none, that means that the branch is actually fully returning.
Branch(Option<EdgeBufferNodePtr>, Option<EdgeBufferNodePtr>, Option<EdgeBufferNodePtr>),
/// It's a parallel link (i.e., multiple ways taken concurrently).
///
/// # Layout
/// - `0`: The edges that represent the branches. Every pointer in the vector is a branch.
/// - `1`: The edges that represent the joining edge.
Parallel(Vec<EdgeBufferNodePtr>, EdgeBufferNodePtr),
/// It's a repeating link (i.e., a given set of edges is taken repeatedly).
///
/// # Layout
/// - `0`: The edges that represent the condition-computation.
/// - `1`: The edges that represent the repeated loop (unless there are no edges in it).
/// - `2`: The edges that are taken after the loop (unless the while actually returns).
Loop(EdgeBufferNodePtr, Option<EdgeBufferNodePtr>, Option<EdgeBufferNodePtr>),
/// A special kind of connection that is not a placeholder but expliticly means "it just stops".
End,
/// A special kind of connection that is not a placeholder but really means 'returns'.
Stop,
/// No link (yet)
None,
}
impl EdgeBufferNodeLink {
/// Returns whether this EdgeBufferNodeLink is a link (i.e., is _not_ `EdgeBufferNodeLink::None`).
#[inline]
pub fn is_some(&self) -> bool { !self.is_none() }
/// Returns whether this EdgeBufferNodeLink is _not_ a link (i.e., is `EdgeBufferNodeLink::None`).
#[inline]
pub fn is_none(&self) -> bool { matches!(self, Self::None) }
}
/// Defines a shortcut for an EdgeBufferNode 'pointer'.
#[derive(Clone, Debug)]
pub struct EdgeBufferNodePtr(Rc<RefCell<EdgeBufferNode>>);
impl EdgeBufferNodePtr {
/// Borrows the underlying EdgeBuffer.
///
/// # Returns
/// A `Ref` that represents the borrow to the buffer.
#[inline]
pub fn borrow(&self) -> Ref<EdgeBufferNode> { self.0.borrow() }
/// Borrows the underlying EdgeBuffer mutably.
///
/// # Returns
/// A `Ref` that represents the mutable borrow to the buffer.
#[inline]
pub fn borrow_mut(&self) -> RefMut<EdgeBufferNode> { self.0.borrow_mut() }
}
impl Eq for EdgeBufferNodePtr {}
impl Hash for EdgeBufferNodePtr {
fn hash<H: Hasher>(&self, state: &mut H) { self.0.as_ptr().hash(state); }
}
impl PartialEq for EdgeBufferNodePtr {
fn eq(&self, other: &Self) -> bool { Rc::ptr_eq(&self.0, &other.0) }
}
/// Defines a node in the EdgeBuffer linked list.
#[derive(Clone, Debug)]
pub struct EdgeBufferNode {
/// The Edge this node wraps.
pub edge: Edge,
/// The pointer to the next in the buffer.
pub next: EdgeBufferNodeLink,
}
impl EdgeBufferNode {
/// Constructor for the EdgeBufferNode that initializes it with the given Edge.
///
/// # Arguments
/// - `edge`: The Edge to put in the node.
///
/// # Returns
/// An EdgeBufferNodePtr that refers to the newly instantiated object.
#[allow(clippy::new_ret_no_self)]
#[inline]
fn new(edge: Edge) -> EdgeBufferNodePtr { EdgeBufferNodePtr(Rc::new(RefCell::new(Self { edge, next: EdgeBufferNodeLink::None }))) }
/// Helper function that asserts the given Edge is linearly connectible.
///
/// # Arguments
/// - `edge`: The Edge to analyse.
///
/// # Returns
/// Nothing, which, if it does, means the assertion succeeded.
///
/// # Panics
/// This function panics if the assertion fails.
#[inline]
fn assert_linear(edge: &Edge) {
match edge {
Edge::Node { .. } | Edge::Linear { .. } | Edge::Join { .. } | Edge::Call { .. } => {},
edge => {
panic!("Attempted to connect an edge of type '{edge:?}' linearly");
},
}
}
/// Helper function that asserts the given Edge is connectible as a branch.
///
/// # Arguments
/// - `edge`: The Edge to analyse.
///
/// # Returns
/// Nothing, which, if it does, means the assertion succeeded.
///
/// # Panics
/// This function panics if the assertion fails.
#[inline]
fn assert_branch(edge: &Edge) {
match edge {
Edge::Branch { .. } => {},
edge => {
panic!("Attempted to connect an edge of type '{edge:?}' branching");
},
}
}
/// Helper function that asserts the given Edge is connectible as parallel.
///
/// # Arguments
/// - `edge`: The Edge to analyse.
///
/// # Returns
/// Nothing, which, if it does, means the assertion succeeded.
///
/// # Panics
/// This function panics if the assertion fails.
#[inline]
fn assert_parallel(edge: &Edge) {
match edge {
Edge::Parallel { .. } => {},
edge => {
panic!("Attempted to connect an edge of type '{edge:?}' parallel");
},
}
}
/// Helper function that asserts the given Edge is connectible as a loop.
///
/// # Arguments
/// - `edge`: The Edge to analyse.
///
/// # Returns
/// Nothing, which, if it does, means the assertion succeeded.
///
/// # Panics
/// This function panics if the assertion fails.
#[inline]
fn assert_loop(edge: &Edge) {
match edge {
Edge::Loop { .. } => {},
edge => {
panic!("Attempted to connect an edge of type '{edge:?}' as a loop");
},
}
}
/// Helper function that asserts the given Edge is not connectible at all.
///
/// # Arguments
/// - `edge`: The Edge to analyse.
///
/// # Returns
/// Nothing, which, if it does, means the assertion succeeded.
///
/// # Panics
/// This function panics if the assertion fails.
#[inline]
fn assert_stop(edge: &Edge) {
match edge {
Edge::Stop { .. } | Edge::Return { .. } => {},
edge => {
panic!("Attempted to mark an edge of type '{edge:?}' as a stop node");
},
}
}
/// Connects this node to the given one using a linear connection.
///
/// # Arguments
/// - `other`: The pointer to the other node to connect to.
///
/// # Panics
/// This function panics if the underlying Edge semantically cannot connect linearly.
fn connect_linear(&mut self, other: EdgeBufferNodePtr) {
// Sanity check: only do if semantically correct
Self::assert_linear(&self.edge);
// If there was already a link, move it to the other link
if self.next.is_some() {
// Get the last pointer in the other branch
let mut last: Cow<EdgeBufferNodePtr> = Cow::Borrowed(&other);
loop {
let next: Option<EdgeBufferNodePtr> = last.borrow().next();
match next {
Some(next) => {
last = Cow::Owned(next);
},
None => {
break;
},
}
}
// Sanity check this one can accept linear edges.
let mut l: RefMut<EdgeBufferNode> = last.borrow_mut();
Self::assert_linear(&l.edge);
// Now set it
mem::swap(&mut l.next, &mut self.next);
}
// We can set the link to the other branch
self.next = EdgeBufferNodeLink::Linear(other);
// Done
}
/// Connects this node to the given one using a branching connection.
///
/// # Arguments
/// - `true_branch`: The pointer to the node to connect to in the true-case (if any).
/// - `false_branch`: The pointer to the node to connect to in the false-case (if any).
/// - `next`: The pointer to the node to which both branches join (if any).
///
/// # Panics
/// This function panics if the underlying Edge semantically cannot connect as a branch.
fn connect_branch(&mut self, true_branch: Option<EdgeBufferNodePtr>, false_branch: Option<EdgeBufferNodePtr>, next: Option<EdgeBufferNodePtr>) {
// Sanity check: only do if semantically correct
Self::assert_branch(&self.edge);
// If there was already a link, move it to the next link
if self.next.is_some() {
// If there is no next, yes, that's tough
if next.is_none() {
panic!("Cannot transfer existing connection of type '{:?}' on branch when it has no 'next' part", self.next);
}
// Get the last pointer in the next branch
let mut last: EdgeBufferNodePtr = next.as_ref().unwrap().clone();
loop {
let next: Option<EdgeBufferNodePtr> = last.borrow().next();
match next {
Some(next) => {
last = next;
},
None => {
break;
},
}
}
// Sanity check this one can accept linear edges.
let mut l: RefMut<EdgeBufferNode> = last.borrow_mut();
Self::assert_branch(&l.edge);
// Now set it
mem::swap(&mut l.next, &mut self.next);
}
// We can set the link to the other branch
self.next = EdgeBufferNodeLink::Branch(true_branch, false_branch, next);
// Done
}
/// Connects this node to the given one using a parallel connection.
///
/// # Arguments
/// - `branches`: The branches that are taken concurrently.
/// - `join`: The pointer to the node that joins the parallel branches.
///
/// # Panics
/// This function panics if the underlying Edge semantically cannot connect as a parallel.
fn connect_parallel(&mut self, branches: Vec<EdgeBufferNodePtr>, join: EdgeBufferNodePtr) {
// Sanity check: only do if semantically correct
Self::assert_parallel(&self.edge);
// If there was already a link, move it to the other link
if self.next.is_some() {
// Get the last pointer in the other branch
let mut last: Cow<EdgeBufferNodePtr> = Cow::Borrowed(&join);
loop {
let next: Option<EdgeBufferNodePtr> = last.borrow().next();
match next {
Some(next) => {
last = Cow::Owned(next);
},
None => {
break;
},
}
}
// Sanity check this one can accept parallel edges.
let mut l: RefMut<EdgeBufferNode> = last.borrow_mut();
Self::assert_parallel(&l.edge);
// Now set it
mem::swap(&mut l.next, &mut self.next);
}
// We can set the link to the other branch
self.next = EdgeBufferNodeLink::Parallel(branches, join);
}
/// Connects this node to the given one as a looping node.
///
/// # Arguments
/// - `condition`: The branches that compute the condition at the start of every loop.
/// - `body`: The branches that are taken repeatedly.
/// - `next`: The branches to take when the loop has completed.
///
/// # Panics
/// This function panics if the underlying Edge semantically cannot connect as a parallel.
fn connect_loop(&mut self, condition: EdgeBufferNodePtr, body: Option<EdgeBufferNodePtr>, next: Option<EdgeBufferNodePtr>) {
// Sanity check: only do if semantically correct
Self::assert_loop(&self.edge);
// If there was already a link, move it to the other link
if self.next.is_some() {
// If there is no next, yes, that's tough
if next.is_none() {
panic!("Cannot transfer existing connection of type '{:?}' on loop when it has no 'next' part", self.next);
}
// Get the last pointer in the other branch
let mut last: EdgeBufferNodePtr = next.as_ref().unwrap().clone();
loop {
let next: Option<EdgeBufferNodePtr> = last.borrow().next();
match next {
Some(next) => {
last = next;
},
None => {
break;
},
}
}
// Sanity check this one can accept parallel edges.
let mut l: RefMut<EdgeBufferNode> = last.borrow_mut();
Self::assert_loop(&l.edge);
// Now set it
mem::swap(&mut l.next, &mut self.next);
}
// We can set the link to the other branch
self.next = EdgeBufferNodeLink::Loop(condition, body, next);
}
/// 'Cuts off' the branch by inserting a special 'no connection here (yet)' insert.
///
/// # Panics
/// This function panics if the underlying Edge semantically cannot connect linearly.
fn connect_end(&mut self) {
// Sanity check: only do if semantically correct
Self::assert_linear(&self.edge);
// Set the connection
self.next = EdgeBufferNodeLink::End;
}
/// 'Cuts off' the branch by inserting a special 'no connection here' insert.
///
/// # Panics
/// This function panics if the underlying Edge can actually connect something (i.e., is not an `Edge::Stop` or `Edge::Return`).
fn connect_stop(&mut self) {
// Sanity check: only do if semantically correct
Self::assert_stop(&self.edge);
// Set the connection
self.next = EdgeBufferNodeLink::Stop;
}
/// Returns the next node. Note that, in the case of non-linear connections, this actually returns the next node where the branch has joined again.
///
/// # Returns
/// The pointer to the next node.
pub fn next(&self) -> Option<EdgeBufferNodePtr> {
match &self.next {
EdgeBufferNodeLink::Linear(next) => Some(next.clone()),
EdgeBufferNodeLink::Branch(_, _, next) => next.clone(),
EdgeBufferNodeLink::Parallel(_, next) => Some(next.clone()),
EdgeBufferNodeLink::Loop(_, _, next) => next.clone(),
EdgeBufferNodeLink::End => None,
EdgeBufferNodeLink::Stop => None,
EdgeBufferNodeLink::None => None,
}
}
/// Returns whether this node is connect by end.
#[inline]
pub fn is_end(&self) -> bool { matches!(self.next, EdgeBufferNodeLink::Stop) }
}
/***** LIBRARY *****/
/// Defines an EdgeBuffer, which is a muteable buffer to which we can compile edges.
///
/// Every buffer may be thought of as a single 'stream' of operations. If it branches for whatever reason, typically, multiple EdgeBuffers are involved the define each of the streams.
///
/// Because an EdgeBuffer is a single stream, it is implemented as a LinkedList of edges. Any branch is represented as links to other buffers.
#[derive(Clone, Debug)]
pub struct EdgeBuffer {
/// The EdgeBuffer is secretly a LinkedList of edges that link to the next one.
start: Option<EdgeBufferNodePtr>,
/// Points to the end of the LinkedList (if any).
end: Option<EdgeBufferNodePtr>,
}
impl EdgeBuffer {
/// Constructor for the EdgeBuffer that initializes it to empty.
///
/// # Returns
/// An EdgeBufferPtr that refers to the newly instantiated object.
#[inline]
pub fn new() -> EdgeBuffer { Self { start: None, end: None } }
/// Adds a new edge to the end of this EdgeBuffer.
///
/// Note that the function itself is agnostic to the specific kind of edge. The only requirement is that, when using `EdgeBuffer::write()`, the last edge in the buffer can linearly connect to this one. Be aware of this when writing non-Linear edges using this function.
///
/// # Arguments
/// - `edge`: The Edge to append.
///
/// # Returns
/// Nothing, but does add it internally.
pub fn write(&mut self, edge: Edge) {
// Create a new EdgeBufferNode for this Edge and add it
let node = EdgeBufferNode::new(edge);
if self.start.is_none() {
// If there is no start node yet, set it
self.start = Some(node.clone());
self.end = Some(node);
} else {
// We can simply add the connection
self.end.as_ref().unwrap().borrow_mut().connect_linear(node.clone());
self.end = Some(node);
}
}
/// Adds a new edge to the end of this EdgeBuffer, although it is added _before_ any stop/return/jump whatever.
///
/// Note that the function itself is agnostic to the specific kind of edge. The only requirement is that, when using `EdgeBuffer::write()`, the last non-returning edge in the buffer can linearly connect to this one. Be aware of this when writing non-Linear edges using this function.
///
/// # Arguments
/// - `edge`: The Edge to append.
///
/// # Returns
/// Nothing, but does add it internally.
pub fn insert_at_end(&mut self, edge: Edge) {
// Create a new EdgeBufferNode for this Edge and add it
let node: EdgeBufferNodePtr = EdgeBufferNode::new(edge);
if self.start.is_none() {
// If there is no start node yet, set it
self.start = Some(node.clone());
self.end = Some(node);
} else if matches!(self.end.as_ref().unwrap().borrow().next, EdgeBufferNodeLink::End) {
// Simply insert it after the last one, carrying over the link
let prev_link: EdgeBufferNodeLink = {
let mut end: RefMut<EdgeBufferNode> = self.end.as_ref().unwrap().borrow_mut();
// Get the last link
let mut prev_link: EdgeBufferNodeLink = EdgeBufferNodeLink::None;
std::mem::swap(&mut end.next, &mut prev_link);
// Connect & insert
end.connect_linear(node.clone());
prev_link
};
self.end = Some(node.clone());
// Insert the link
node.borrow_mut().next = prev_link;
} else if matches!(self.end.as_ref().unwrap().borrow().next, EdgeBufferNodeLink::Stop) {
// In the case of stops it's slightly more complicated since we also have to move the previous node
// Find the node preceding the last one
let mut prev: Option<EdgeBufferNodePtr> = None;
let mut this: Option<EdgeBufferNodePtr> = self.start.clone();
while let Some(this_node) = this.clone() {
// Borrow the node
let this_node: Ref<EdgeBufferNode> = this_node.borrow();
// Advance it
if let Some(next_node) = this_node.next() {
prev = this;
this = Some(next_node);
} else {
break;
}
}
// Now match on whether we found a prev or not
if let Some(prev) = prev {
// There is, so connect from that node onwards
let mut prev: RefMut<EdgeBufferNode> = prev.borrow_mut();
// Get its link
let mut prev_link: EdgeBufferNodeLink = EdgeBufferNodeLink::None;
std::mem::swap(&mut prev.next, &mut prev_link);
// Insert the new node
prev.connect_linear(node.clone());
node.borrow_mut().next = prev_link;
} else {
// There isn't so add as start
self.start = Some(node.clone());
node.borrow_mut().connect_linear(self.end.as_ref().unwrap().clone());
}
} else {
// We can simply add the connection
self.end.as_ref().unwrap().borrow_mut().connect_linear(node.clone());
self.end = Some(node);
}
}
/// Adds a new (linear) edge to the end of this EdgeBuffer, but one that loops back to an earlier point in the buffer.
///
/// Note that the function itself is agnostic to the specific kind of edge. The only requirement is that, when using `EdgeBuffer::write()`, the last edge in the buffer can linearly connect to this one. Be aware of this when writing non-Linear edges using this function.
///
/// # Arguments
/// - `edge`: The Edge to append.
/// - `target`: The EdgeNode to wrap back to.
///
/// # Returns
/// Nothing, but does add it internally.
pub fn write_jump(&mut self, target: EdgeBufferNodePtr) {
// Create a new EdgeBufferNode for this Edge and connect it to the new node
let node: EdgeBufferNodePtr = EdgeBufferNode::new(Edge::Linear { instrs: vec![], next: usize::MAX });
node.borrow_mut().connect_linear(target);
// Add it
if self.start.is_none() {
// If there is no start node yet, set it
self.start = Some(node.clone());
self.end = Some(node);
} else {
// We can simply add the connection
self.end.as_ref().unwrap().borrow_mut().connect_linear(node.clone());
self.end = Some(node);
}
}
/// Adds a new branch to the end of this EdgeBuffer.
///
/// It will automatically be appended by an empty linear node that marks the 'joining' node of the Branch, unless there is a true and a false branch _and_ both are returning (i.e., feature a return-branch in all paths).
///
/// Note that the function requires that the top edge on the buffer is linearly connectible. However, as a tradeoff, it also makes sure that it always is (as long as it doesn't return).
///
/// # Arguments
/// - `true_branch`: The Edges to take when the branch is taken (if any).
/// - `false_branch`: The Edges to take when the branch is _not_ taken (if any).
///
/// # Returns
/// Nothing, but does append the buffer with a new branch structure.
pub fn write_branch(&mut self, true_branch: Option<EdgeBuffer>, false_branch: Option<EdgeBuffer>) {
// If either branch is empty, do not write it
if (true_branch.is_none() || true_branch.as_ref().unwrap().start.is_none())
&& (false_branch.is_none() || false_branch.as_ref().unwrap().start.is_none())
{
return;
}
// Analyse if either branch returns
let true_returns: bool = true_branch.is_some() && true_branch.as_ref().unwrap().fully_returns();
let false_returns: bool = false_branch.is_some() && false_branch.as_ref().unwrap().fully_returns();
// Prepare the 'next' node
let next: Option<EdgeBufferNodePtr> =
if !true_returns || !false_returns { Some(EdgeBufferNode::new(Edge::Linear { instrs: vec![], next: usize::MAX })) } else { None };
// Take the start edges of both branches
let true_start: Option<EdgeBufferNodePtr> = true_branch.map(|b| b.start).unwrap_or(None);
let false_start: Option<EdgeBufferNodePtr> = false_branch.map(|b| b.start).unwrap_or(None);
// Now create a branch node with it all
let branch: EdgeBufferNodePtr =
EdgeBufferNode::new(Edge::Branch { true_next: usize::MAX, false_next: Some(usize::MAX), merge: Some(usize::MAX) });
branch.borrow_mut().connect_branch(true_start, false_start, next.clone());
// Finally, add it as linear to the end of this buffer
let next: EdgeBufferNodePtr = next.unwrap_or_else(|| branch.clone());
match &self.end {
Some(end) => {
end.borrow_mut().connect_linear(branch);
self.end = Some(next);
},
None => {
self.start = Some(branch);
self.end = Some(next);
},
}
}
/// Adds a new parallel to the end of this EdgeBuffer.
///
/// It will automatically be appended by a join.
///
/// Note that the function requires that the top edge on the buffer is linearly connectible. However, as a tradeoff, it also makes sure that it always is after this call.
///
/// # Arguments
/// - `branches`: The Edges that represent each of the branches to run in parallel.
/// - `merge`: The MergeStrategy that the generated join-edge needs to implement.
///
/// # Returns
/// Nothing, but does append the buffer with a new parallel structure.
pub fn write_parallel(&mut self, branches: Vec<EdgeBuffer>, merge: MergeStrategy) {
// If there are no branches, do not write it
if branches.is_empty() {
return;
}
// Prepare the 'next' node
let next: EdgeBufferNodePtr = EdgeBufferNode::new(Edge::Join { merge, next: usize::MAX });
// Now create a parallel node with it all
let parallel: EdgeBufferNodePtr =
EdgeBufferNode::new(Edge::Parallel { branches: (0..branches.len()).map(|_| usize::MAX).collect(), merge: usize::MAX });
parallel.borrow_mut().connect_parallel(branches.into_iter().filter_map(|b| b.start).collect(), next.clone());
// Finally, add it as linear to the end of this buffer
match &self.end {
Some(end) => {
end.borrow_mut().connect_linear(parallel);
self.end = Some(next);
},
None => {
self.start = Some(parallel);
self.end = Some(next);
},
}
}
/// Adds a new loop to the end of this EdgeBuffer.
///
/// It will automatically be appended by a 'next edge to take'.
///
/// Note that the function requires that the top edge on the buffer is linearly connectible. However, as a tradeoff, it also makes sure that it always is after this call.
///
/// # Arguments
/// - `condition`: The Edges that represent the condition computation.
/// - `consequence`: The body of Edges that are actually repeated.
///
/// # Returns
/// Nothing, but does append the buffer with a new loop structure.
pub fn write_loop(&mut self, condition: EdgeBuffer, consequence: EdgeBuffer) {
// Fail if the condition is empty
if condition.start.is_none() {
panic!("Got empty condition in a loop-edge");
}
// Analyse if the main branch returns
let body_returns: bool = consequence.fully_returns();
// Prepare the 'next' node
let next: Option<EdgeBufferNodePtr> =
if !body_returns { Some(EdgeBufferNode::new(Edge::Linear { instrs: vec![], next: usize::MAX })) } else { None };
// Take the start edges of the condition and consequence
let cond_start: EdgeBufferNodePtr = match condition.start {
Some(start) => start,
// Otherwise, clone the edgebufferbode which _must_ return
None => next.clone().expect("Got an empty condition-branch but also empty next; this should never happen!"),
};
let cons_start: Option<EdgeBufferNodePtr> = consequence.start;
// Now create a loop node with it all
let eloop: EdgeBufferNodePtr = EdgeBufferNode::new(Edge::Loop { cond: usize::MAX, body: usize::MAX, next: Some(usize::MAX) });
eloop.borrow_mut().connect_loop(cond_start, cons_start, next.clone());
// Finally, add it as linear to the end of this buffer
let next: EdgeBufferNodePtr = next.unwrap_or_else(|| eloop.clone());
match &self.end {
Some(end) => {
end.borrow_mut().connect_linear(eloop);
self.end = Some(next);
},
None => {
self.start = Some(eloop);
self.end = Some(next);
},
}
}
/// Adds a new end connection to the end of this EdgeBuffer.
///
/// Note that the function requires that the top edge on the buffer is linearly connectible. Because an end doesn't connect, that means no `EdgeBuffer::write*()` can be used again.
///
/// # Arguments
/// - `end_edge`: The edge that forms the actual end node. May be anything that linearly connects.
///
/// # Returns
/// Nothing, but does append the buffer with a new end structure.
pub fn write_end(&mut self) {
// Add it as linear to the end of this buffer
match &self.end {
Some(e) => {
e.borrow_mut().connect_end();
},
None => {
panic!("Cannot connect 'End' to an empty buffer.")
},
}
}
/// Adds a new stop to the end of this EdgeBuffer.
///
/// Note that the function requires that the top edge on the buffer is linearly connectible. Because an end doesn't connect, that means no `EdgeBuffer::write*()` can be used again.
///
/// # Arguments
/// - `stop_edge`: The edge that forms the actual end node. May only be 'Edge::Return` or `Edge::Stop`.
///
/// # Returns
/// Nothing, but does append the buffer with a new end structure.
pub fn write_stop(&mut self, stop_edge: Edge) {
// Create the end node
let end: EdgeBufferNodePtr = EdgeBufferNode::new(stop_edge);
end.borrow_mut().connect_stop();
// Add it as linear to the end of this buffer
match &self.end {
Some(e) => {
e.borrow_mut().connect_linear(end.clone());
self.end = Some(end);
},
None => {
self.start = Some(end.clone());
self.end = Some(end);
},
}
}
/// Appends the given EdgeBuffer to this one.
///
/// # Arguments
/// - `other`: The EdgeBuffer to consume and append.
///
/// # Returns
/// Nothing, but does append the buffer with the new struct in the other buffer.
pub fn append(&mut self, other: EdgeBuffer) {
// Get the start node from the other, if any
let start: EdgeBufferNodePtr = match other.start {
Some(start) => start,
None => {
return;
},
};
// Find the end of the buffer
let mut done: HashSet<EdgeBufferNodePtr> = HashSet::with_capacity(32);
let mut end: EdgeBufferNodePtr = start.clone();
loop {
let next: Option<EdgeBufferNodePtr> = end.borrow().next();
match next {
Some(next) => {
// Only continue if not done before
if done.contains(&end) {
break;
}
done.insert(next.clone());
// Set it as the next node to iterate.
end = next;
},
None => {
break;
},
}
}
// Write the start to ourselves
if self.start.is_none() {
// If there is no start node yet, set it
self.start = Some(start);
self.end = Some(end);
} else {
// We can simply add the connection
self.end.as_ref().unwrap().borrow_mut().connect_linear(start);
self.end = Some(end);
}
}
/// Merges all of the consecutive linear edges in this buffer to one edge.
///
/// # Returns
/// Nothing, but does merge some edges if they are consecutive and linear.
pub fn merge_linear(&mut self) {
// Start iterating over our nodes
let mut last_lin: Option<EdgeBufferNodePtr> = None;
let mut this: Option<EdgeBufferNodePtr> = self.start.clone();
while let Some(node) = this.take() {
// Get the node
let mut n: RefMut<EdgeBufferNode> = node.borrow_mut();
// Do special stuff if it's linear
if let Edge::Linear { instrs, .. } = &mut n.edge {
// Either set it, or merge it
if let Some(last_lin) = &mut last_lin {
// We merge it
let mut ln: RefMut<EdgeBufferNode> = last_lin.borrow_mut();
if let Edge::Linear { instrs: last_instrs, .. } = &mut ln.edge {
last_instrs.append(instrs);
} else {
panic!("last_lin should never be a non-Edge::Linear!");
}
// Now remove the second edge from the edge buffer
ln.next = n.next.clone();
} else {
// We set it
last_lin = Some(node.clone());
}
} else {
// No more linear edge
last_lin = None;
}
// Go to the next one
this = n.next();
}
}
/// Helper function that traverses the EdgeBuffer to see if it fully returns.
///
/// # Returns
/// Whether or not this buffer fully returns (true) or not (false).
pub fn fully_returns(&self) -> bool {
let mut done: HashSet<EdgeBufferNodePtr> = HashSet::new();
// Iterate as long as we can
let mut this: Option<EdgeBufferNodePtr> = self.start.clone();
while this.is_some() {
// Attempt to continue to branch
this = {
let node: Ref<EdgeBufferNode> = this.as_ref().unwrap().borrow();
let this_next: Option<EdgeBufferNodePtr>;
match &node.next {
EdgeBufferNodeLink::Linear(next) => {
// Make sure we did not do the next yet
if done.contains(next) {
return false;
}
done.insert(next.clone());
this_next = Some(next.clone());
},
EdgeBufferNodeLink::Branch(_, _, next) => {
// If 'next' is none, then it returns; otherwise, we know both of the branches don't, so continue with next
match next {
Some(next) => {
if done.contains(next) {
return false;
}
done.insert(next.clone());
this_next = Some(next.clone());
},
None => {
return true;
},
};
},
EdgeBufferNodeLink::Parallel(_, next) => {
// Always continue since parallels cannot return
if done.contains(next) {
return false;
}
done.insert(next.clone());
this_next = Some(next.clone());
},
EdgeBufferNodeLink::Loop(_, _, next) => {
// If 'next' is none, then it returns; otherwise, we know the loop doesn't, so continue
match next {
Some(next) => {
if done.contains(next) {
return false;
}
done.insert(next.clone());
this_next = Some(next.clone());
},
None => {
return true;
},
};
},
EdgeBufferNodeLink::End => {
// Resolved; does not return
return false;
},
EdgeBufferNodeLink::Stop => {
// Yep this one returns, I'd say
return true;
},
EdgeBufferNodeLink::None => {
// Unresolved; does not return
return false;
},
};
this_next
};
}
// We made it through so it's not fully returning
false
}
/// Returns the start node of the EdgeBuffer, if any. This may be used for iteration.
pub fn start(&self) -> &Option<EdgeBufferNodePtr> { &self.start }
}
impl Default for EdgeBuffer {
#[inline]
fn default() -> Self { Self::new() }
}
impl From<EdgeBufferNodePtr> for EdgeBuffer {
fn from(value: EdgeBufferNodePtr) -> Self {
// Find the end of the given array
let mut end: EdgeBufferNodePtr = value.clone();
loop {
let next: Option<EdgeBufferNodePtr> = end.borrow().next();
match next {
Some(next) => {
end = next;
},
None => {
break;
},
}
}
// Use that to mark the start and end of the new Buffer
Self { start: Some(value), end: Some(end) }
}
}
impl From<&EdgeBufferNodePtr> for EdgeBuffer {
fn from(value: &EdgeBufferNodePtr) -> Self {
// Find the end of the given array
let mut end: EdgeBufferNodePtr = value.clone();
loop {
let next: Option<EdgeBufferNodePtr> = end.borrow().next();
match next {
Some(next) => {
end = next;
},
None => {
break;
},
}
}
// Use that to mark the start and end of the new Buffer
Self { start: Some(value.clone()), end: Some(end) }
}
}