1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
// SYMBOL TABLE.rs
// by Lut99
//
// Created:
// 23 Aug 2022, 18:04:09
// Last edited:
// 01 Nov 2023, 16:09:22
// Auto updated?
// Yes
//
// Description:
//! Implements a simple SymbolTable struct that we use to keep track of
//! definitions and their assigned types.
//
use std::cell::{Ref, RefCell};
use std::collections::{HashMap, HashSet};
use std::fmt::Debug;
use std::mem;
use std::rc::Rc;
use specifications::package::Capability;
use specifications::version::Version;
use crate::data_type::{ClassSignature, DataType, FunctionSignature};
pub use crate::errors::SymbolTableError as Error;
use crate::spec::TextRange;
/// Defines a symbol table entry within the SymbolTable.
#[derive(Clone, Debug)]
pub enum SymbolTableEntry {
/// Defines a function entry within the SymbolTable.
FunctionEntry(Rc<RefCell<FunctionEntry>>),
/// Defines a class entry (i.e., custom type) within the SymbolTable.
ClassEntry(Rc<RefCell<ClassEntry>>),
/// Defines a regular variable entry within the SymbolTable.
VarEntry(Rc<RefCell<VarEntry>>),
}
impl SymbolTableEntry {
// /// Returns the kind of the entry.
// #[inline]
// pub fn kind(&self) -> SymbolTableEntryKind {
// use SymbolTableEntry::*;
// match self {
// FunctionEntry(_) => SymbolTableEntryKind::Function,
// ClassEntry(_) => SymbolTableEntryKind::Class,
// VarEntry(_) => SymbolTableEntryKind::Var,
// }
// }
// /// Returns the name of the entry.
// #[inline]
// pub fn name(&self) -> String {
// use SymbolTableEntry::*;
// match self {
// FunctionEntry(f) => f.borrow().name(),
// ClassEntry(c) => c.borrow().name(),
// VarEntry(v) => v.borrow().name(),
// }
// }
// /// Returns the range of the entry.
// #[inline]
// pub fn range(&self) -> TextRange {
// use SymbolTableEntry::*;
// match self {
// FunctionEntry(f) => f.borrow().range(),
// ClassEntry(c) => c.borrow().range(),
// VarEntry(v) => v.borrow().range(),
// }
// }
}
impl From<Rc<RefCell<FunctionEntry>>> for SymbolTableEntry {
#[inline]
fn from(value: Rc<RefCell<FunctionEntry>>) -> Self { SymbolTableEntry::FunctionEntry(value) }
}
impl From<Rc<RefCell<ClassEntry>>> for SymbolTableEntry {
#[inline]
fn from(value: Rc<RefCell<ClassEntry>>) -> Self { SymbolTableEntry::ClassEntry(value) }
}
impl From<Rc<RefCell<VarEntry>>> for SymbolTableEntry {
#[inline]
fn from(value: Rc<RefCell<VarEntry>>) -> Self { SymbolTableEntry::VarEntry(value) }
}
/// Defines a function entry within the SymbolTable.
#[derive(Clone, Debug)]
pub struct FunctionEntry {
/// The name of the function entry.
pub name: String,
/// The signature of the function entry.
pub signature: FunctionSignature,
/// References to entries that form the Function's parameters.
pub params: Vec<Rc<RefCell<VarEntry>>>,
/// If set to non-zero, then this function is imported from a package with the given name.
pub package_name: Option<String>,
/// If set to non-zero, then this function is imported from a package with the given version.
pub package_version: Option<Version>,
/// If set to non-zero, then this function is a method in the class with the given name.
pub class_name: Option<String>,
/// If this function is external (i.e., `package_name` is not None), then this list represents the name of each of the arguments. It will thus always be as long as the number of arguments in that case (and empty otherwise).
pub arg_names: Vec<String>,
/// Any requirements the function has in terms of hardware support. Only ever not-None if an external function.
pub requirements: Option<HashSet<Capability>>,
/// The index in the workflow buffer of this function.
pub index: usize,
// /// The parent symbol table. Is always safe to unwrap.
// pub table : Option<Rc<RefCell<SymbolTable>>>,
/// Points to the entire function definition (or import).
pub range: TextRange,
}
impl FunctionEntry {
/// Creates a FunctionEntry as if it was defined as a builtin function.
///
/// # Generic arguments
/// - `S`: The String-like type of the function's `name`.
///
/// # Arguments
/// - `name`: The name of the FunctionEntry.
/// - `signature`: The signature of the FunctionEntry.
/// - `range`: The TextRange that points to the definition itself.
///
/// # Returns
/// A new FunctionEntry that has no package or class set, but does have type information populated.
#[inline]
pub fn from_builtin<S: Into<String>>(name: S, signature: FunctionSignature, range: TextRange) -> Self {
Self {
name: name.into(),
signature,
params: vec![],
package_name: None,
package_version: None,
class_name: None,
arg_names: vec![],
requirements: None,
index: usize::MAX,
range,
}
}
/// Creates a FunctionEntry as if it was defined in the source text.
///
/// # Generic arguments
/// - `S`: The String-like type of the function's `name`.
///
/// # Arguments
/// - `name`: The name of the FunctionEntry.
/// - `range`: The TextRange that points to the definition itself.
///
/// # Returns
/// A new FunctionEntry that has no package or class set, and not yet any type information populated.
#[inline]
pub fn from_def<S: Into<String>>(name: S, range: TextRange) -> Self {
Self {
name: name.into(),
signature: FunctionSignature::default(),
params: vec![],
package_name: None,
package_version: None,
class_name: None,
arg_names: vec![],
requirements: None,
index: usize::MAX,
range,
}
}
/// Creates a FunctionEntry as if it was imported by the given package.
///
/// # Generic arguments
/// - `S1`: The String-like type of the function's `name`.
/// - `S2`: The String-like type of the `package`.
///
/// # Arguments
/// - `name`: The name of the FunctionEntry.
/// - `signature`: The FunctionSignature of this function.
/// - `package`: The name of the package to which this function belongs.
/// - `package_version`: The version of the package to which this function belongs.
/// - `arg_names`: The names of the arguments (corresponds index-wise to the `signature::arg` list).
/// - `requirements`: The list of hardware requirements (as Capabilities) as defined in the function's package file.
/// - `range`: The TextRange that points to the definition itself (i.e., the import statement).
///
/// # Returns
/// A new FunctionEntry that has the given package set, and not yet any type information populated.
#[inline]
pub fn from_import<S1: Into<String>, S2: Into<String>>(
name: S1,
signature: FunctionSignature,
package: S2,
package_version: Version,
arg_names: Vec<String>,
requirements: HashSet<Capability>,
range: TextRange,
) -> Self {
Self {
name: name.into(),
signature,
params: vec![],
package_name: Some(package.into()),
package_version: Some(package_version),
class_name: None,
arg_names,
requirements: Some(requirements),
index: usize::MAX,
range,
}
}
/// Creates a FunctionEntry as if it was a class method.
///
/// # Generic arguments
/// - `S1`: The String-like type of the function's `name`.
/// - `S2`: The String-like type of the `class`.
///
/// # Arguments
/// - `name`: The name of the FunctionEntry.
/// - `class`: The name of the Class to which this function belongs.
/// - `range`: The TextRange that points to the definition itself (i.e., the import statement).
///
/// # Returns
/// A new FunctionEntry that has the given class set, and not yet any type information populated.
#[inline]
pub fn from_method<S1: Into<String>, S2: Into<String>>(name: S1, class: S2, range: TextRange) -> Self {
Self {
name: name.into(),
signature: FunctionSignature::default(),
params: vec![],
package_name: None,
package_version: None,
class_name: Some(class.into()),
arg_names: vec![],
requirements: None,
index: usize::MAX,
range,
}
}
}
/// Defines a class entry (i.e., custom type) within the SymbolTable.
#[derive(Clone, Debug)]
pub struct ClassEntry {
/// The signature of the class (i.e., its name).
pub signature: ClassSignature,
/// References the SymbolTable where the nested declarations are present. This is used to resolve projection on the class.
pub symbol_table: Rc<RefCell<SymbolTable>>,
/// If populated, then this Class was defined in a package with the given name.
pub package_name: Option<String>,
/// If set to non-zero, then this function is imported from a package with the given version.
pub package_version: Option<Version>,
/// The index in the workflow buffer of this class.
pub index: usize,
// /// The parent symbol table. Is always safe to unwrap.
// pub table : Option<Rc<RefCell<SymbolTable>>>,
/// Points to the entire class definition (or import).
pub range: TextRange,
}
impl ClassEntry {
/// Creates a ClassEntry as if it was defined as a builtin type.
///
/// # Arguments
/// - `signature`: The signature of the ClassEntry (contains its name).
/// - `symbol_table`: The nested SymbolTable that this Class uses to identify its fields.
/// - `range`: The TextRange that points to the definition itself.
///
/// # Returns
/// A new ClassEntry that has no package set, but does have type information populated.
#[inline]
pub fn from_builtin(signature: ClassSignature, symbol_table: Rc<RefCell<SymbolTable>>, range: TextRange) -> Self {
Self { signature, symbol_table, package_name: None, package_version: None, index: usize::MAX, range }
}
/// Creates a ClassEntry as if it was defined in the source text.
///
/// # Arguments
/// - `signature`: The signature of the ClassEntry (contains its name).
/// - `symbol_table`: The nested SymbolTable that this Class uses to identify its fields.
/// - `range`: The TextRange that points to the definition itself.
///
/// # Returns
/// A new ClassEntry that has no package set, but does have type information populated.
#[inline]
pub fn from_def(signature: ClassSignature, symbol_table: Rc<RefCell<SymbolTable>>, range: TextRange) -> Self {
Self { signature, symbol_table, package_name: None, package_version: None, index: usize::MAX, range }
}
/// Creates a ClassEntry as if it was imported by the given package.
///
/// # Generic arguments
/// - `S`: The String-like type of the `package`.
///
/// # Arguments
/// - `name`: The name of the ClassEntry.
/// - `symbol_table`: The nested SymbolTable that this Class uses to identify its fields.
/// - `package`: The name of the package to which this class belongs.
/// - `package_version`: The version of the package to which this function belongs.
/// - `range`: The TextRange that points to the definition itself (i.e., the import statement).
///
/// # Returns
/// A new ClassEntry that has the given package set and is defined as not having methods.
#[inline]
pub fn from_import<S: Into<String>>(
signature: ClassSignature,
symbol_table: Rc<RefCell<SymbolTable>>,
package: S,
package_version: Version,
range: TextRange,
) -> Self {
Self { signature, symbol_table, package_name: Some(package.into()), package_version: Some(package_version), index: usize::MAX, range }
}
}
/// Defines a regular variable entry within the SymbolTable.
#[derive(Clone, Debug)]
pub struct VarEntry {
/// The name/identifier of the variable.
pub name: String,
/// The data type of the variable (i.e., its signature).
///
/// A DataType of `DataType::Any` indicates that the data type may still need to be resolved in the typing phase. After that, though, it means there is not enough information to actually determine the variable's type at compile time.
pub data_type: DataType,
/// If this variable is actually a parameter of a function, the this field contains the function's name.
pub function_name: Option<String>,
/// If this variable is actually a property of a class, the this field contains the class's name.
pub class_name: Option<String>,
/// The index in the workflow buffer of this variable.
pub index: usize,
/// The range that points to the entire definition of the variable entry.
pub range: TextRange,
}
impl VarEntry {
/// Creates a VarEntry as if it was defined in the source text.
///
/// # Generic arguments
/// - `S`: The String-like type of the variable's `name`.
///
/// # Arguments
/// - `name`: The name of the VarEntry.
/// - `range`: The TextRange that points to the definition itself.
///
/// # Returns
/// A new VarEntry that has no function or class set, and not yet any type information populated.
#[inline]
pub fn from_def<S: Into<String>>(name: S, range: TextRange) -> Self {
Self { name: name.into(), data_type: DataType::Any, function_name: None, class_name: None, index: usize::MAX, range }
}
/// Creates a VarEntry as if it was a parameter of a function.
///
/// # Generic arguments
/// - `S1`: The String-like type of the variable's `name`.
/// - `S2`: The String-like type of the `function`.
///
/// # Arguments
/// - `name`: The name of the VarEntry.
/// - `function`: The name of the function to which this variable belongs.
/// - `range`: The TextRange that points to the definition itself (i.e., the import statement).
///
/// # Returns
/// A new VarEntry that has the given function set but not yet any type information populated.
#[inline]
pub fn from_param<S1: Into<String>, S2: Into<String>>(name: S1, function: S2, range: TextRange) -> Self {
Self { name: name.into(), data_type: DataType::Any, function_name: Some(function.into()), class_name: None, index: usize::MAX, range }
}
/// Creates a VarEntry as if it was a property of a class.
///
/// # Generic arguments
/// - `S1`: The String-like type of the variable's `name`.
/// - `D`: The DataType-like type of the `data_type`.
/// - `S2`: The String-like type of the `class`.
///
/// # Arguments
/// - `name`: The name of the VarEntry.
/// - `data_type`: The DataType of this property.
/// - `class`: The name of the class to which this variable belongs.
/// - `range`: The TextRange that points to the definition itself (i.e., the import statement).
///
/// # Returns
/// A new VarEntry that has the given class set but not yet any type information populated.
#[inline]
pub fn from_prop<S1: Into<String>, D: Into<DataType>, S2: Into<String>>(name: S1, data_type: D, class: S2, range: TextRange) -> Self {
Self { name: name.into(), data_type: data_type.into(), function_name: None, class_name: Some(class.into()), index: usize::MAX, range }
}
}
/// Defines a SymbolTable that contains all definitions of a single scope.
#[derive(Clone, Debug)]
pub struct SymbolTable {
/// Contains the parent symbol table, if any.
pub parent: Option<Rc<RefCell<SymbolTable>>>,
/// Contains all entries that live within the function namespace.
functions: HashMap<String, Rc<RefCell<FunctionEntry>>>,
/// Contains all entries that live within the class namespace.
classes: HashMap<String, Rc<RefCell<ClassEntry>>>,
/// Contains all entries that live within the variable namespace.
variables: HashMap<String, Rc<RefCell<VarEntry>>>,
}
impl SymbolTable {
/// Constructor for the SymbolTable.
///
/// # Returns
/// A new SymbolTable that does not have any definitions within it yet. It is already wrapped in an Rc and RefCell for convenience.
#[inline]
pub fn new() -> Rc<RefCell<Self>> {
Rc::new(RefCell::new(Self {
parent: None,
functions: HashMap::with_capacity(4),
classes: HashMap::with_capacity(4),
variables: HashMap::with_capacity(4),
}))
}
/// Adds the given FunctionEntry to the function namespace in the SymbolTable.
///
/// # Arguments
/// - `entry`: The new FunctionEntry to add.
///
/// # Returns
/// The newly created entry (or rather, a reference-counted pointer to it).
///
/// # Errors
/// This function may error if an entry with this name in this namespace already exists.
pub fn add_func(&mut self, entry: FunctionEntry) -> Result<Rc<RefCell<FunctionEntry>>, Error> {
// Extract some properties of the entry we (might) need later
let name: String = entry.name.clone();
let range: TextRange = entry.range.clone();
// Add it to the table (we overwrite any old ones to better support future errors).
let entry: Rc<RefCell<FunctionEntry>> = Rc::new(RefCell::new(entry));
let old: Option<Rc<RefCell<FunctionEntry>>> = self.functions.insert(name, entry.clone());
// Error if there already was one
if let Some(old) = old {
let entry: Ref<FunctionEntry> = old.borrow();
return Err(Error::DuplicateFunction { name: entry.name.clone(), existing: entry.range.clone(), got: range });
}
// Otherwise, return the new entry
Ok(entry)
}
/// Adds the given ClassEntry to the class namespace in the SymbolTable.
///
/// # Arguments
/// - `entry`: The new ClassEntry to add.
///
/// # Returns
/// The newly created entry (or rather, a reference-counted pointer to it).
///
/// # Errors
/// This function may error if an entry with this name in this namespace already exists.
pub fn add_class(&mut self, entry: ClassEntry) -> Result<Rc<RefCell<ClassEntry>>, Error> {
// Extract some properties of the entry we (might) need later
let name: String = entry.signature.name.clone();
let range: TextRange = entry.range.clone();
// Add it to the table (we overwrite any old ones to better support future errors).
let entry: Rc<RefCell<ClassEntry>> = Rc::new(RefCell::new(entry));
let old: Option<Rc<RefCell<ClassEntry>>> = self.classes.insert(name, entry.clone());
// Error if there already was one
if let Some(old) = old {
let entry: Ref<ClassEntry> = old.borrow();
return Err(Error::DuplicateVariable { name: entry.signature.name.clone(), existing: entry.range.clone(), got: range });
}
// Otherwise, return the new entry
Ok(entry)
}
/// Adds the given VarEntry to the variable namespace in the SymbolTable.
///
/// # Arguments
/// - `entry`: The new VarEntry to add.
///
/// # Returns
/// The newly created entry (or rather, a reference-counted pointer to it).
///
/// # Errors
/// This function may error if an entry with this name in this namespace already exists.
pub fn add_var(&mut self, entry: VarEntry) -> Result<Rc<RefCell<VarEntry>>, Error> {
// Extract some properties of the entry we (might) need later
let name: String = entry.name.clone();
let range: TextRange = entry.range.clone();
// Add it to the table (we overwrite any old ones to better support future errors).
let entry: Rc<RefCell<VarEntry>> = Rc::new(RefCell::new(entry));
let old: Option<Rc<RefCell<VarEntry>>> = self.variables.insert(name, entry.clone());
// Error if there already was one
if let Some(old) = old {
let entry: Ref<VarEntry> = old.borrow();
return Err(Error::DuplicateVariable { name: entry.name.clone(), existing: entry.range.clone(), got: range });
}
// Otherwise, return the new entry
Ok(entry)
}
/// Returns the entry in _all_ namespaces with the given name if it exists.
///
/// This implies that the name is unique across namespaces, so it relies on an external source to make that happen.
///
/// If that somehow fails, returns the first occurrence in the order of functions -> classes -> variables.
///
/// # Generic arguments
/// - `S`: The &str-like type of the target `name`.
///
/// # Arguments
/// - `name`: The name of the entry to retrieve.
///
/// # Returns
/// A reference-counter pointer to the entry if it exists, or else None.
#[inline]
pub fn get<S: AsRef<str>>(&self, name: S) -> Option<SymbolTableEntry> {
// Try the functions first
match self.get_func(name.as_ref()) {
Some(entry) => Some(entry.into()),
None => match self.get_class(name.as_ref()) {
Some(entry) => Some(entry.into()),
None => self.get_var(name).map(|entry| entry.into()),
},
}
}
/// Returns the entry in the function namespace with the given name if it exists.
///
/// # Generic arguments
/// - `S`: The &str-like type of the target `name`.
///
/// # Arguments
/// - `name`: The name of the entry to retrieve.
///
/// # Returns
/// A reference-counter pointer to the entry if it exists, or else None.
pub fn get_func<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<FunctionEntry>>> {
// Try ourselves or else the parent
match self.functions.get(name.as_ref()) {
Some(entry) => Some(entry.clone()),
None => match &self.parent {
Some(parent) => {
// Try our parent instead
let st: Ref<SymbolTable> = parent.borrow();
st.get_func(name)
},
None => None,
},
}
}
/// Returns the entry in the class namespace with the given name if it exists.
///
/// # Generic arguments
/// - `S`: The &str-like type of the target `name`.
///
/// # Arguments
/// - `name`: The name of the entry to retrieve.
///
/// # Returns
/// A reference-counter pointer to the entry if it exists, or else None.
pub fn get_class<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<ClassEntry>>> {
// Try ourselves or else the parent
match self.classes.get(name.as_ref()) {
Some(entry) => Some(entry.clone()),
None => match &self.parent {
Some(parent) => {
// Try our parent instead
let st: Ref<SymbolTable> = parent.borrow();
st.get_class(name)
},
None => None,
},
}
}
/// Returns the entry in the variable namespace with the given name if it exists.
///
/// # Generic arguments
/// - `S`: The &str-like type of the target `name`.
///
/// # Arguments
/// - `name`: The name of the entry to retrieve.
///
/// # Returns
/// A reference-counter pointer to the entry if it exists, or else None.
pub fn get_var<S: AsRef<str>>(&self, name: S) -> Option<Rc<RefCell<VarEntry>>> {
// Try ourselves or else the parent
match self.variables.get(name.as_ref()) {
Some(entry) => Some(entry.clone()),
None => match &self.parent {
Some(parent) => {
// Try our parent instead
let st: Ref<SymbolTable> = parent.borrow();
st.get_var(name)
},
None => None,
},
}
}
/// Returns whether this SymbolTable has any functions defined at all.
#[inline]
pub fn has_functions(&self) -> bool { !self.functions.is_empty() }
/// Returns the number of functions defined in the SymbolTable.
#[inline]
pub fn n_functions(&self) -> usize { self.functions.len() }
/// Returns an iterator over the defined functions (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn functions(&self) -> std::collections::hash_map::Iter<std::string::String, Rc<RefCell<FunctionEntry>>> { self.functions.iter() }
/// Returns a muteable iterator over the defined functions (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn functions_mut(&mut self) -> std::collections::hash_map::IterMut<std::string::String, Rc<RefCell<FunctionEntry>>> {
self.functions.iter_mut()
}
/// Returns a consuming iterator over the defined functions (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
pub fn into_functions(&mut self) -> std::collections::hash_map::IntoIter<std::string::String, Rc<RefCell<FunctionEntry>>> {
// Get the map
let mut map: HashMap<String, Rc<RefCell<FunctionEntry>>> = HashMap::new();
mem::swap(&mut self.functions, &mut map);
// Return the consuming iterator
map.into_iter()
}
/// Returns whether this SymbolTable has any classes defined at all.
#[inline]
pub fn has_classes(&self) -> bool { !self.classes.is_empty() }
/// Returns the number of classes defined in the SymbolTable.
#[inline]
pub fn n_classes(&self) -> usize { self.classes.len() }
/// Returns an iterator over the defined classes (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn classes(&self) -> std::collections::hash_map::Iter<std::string::String, Rc<RefCell<ClassEntry>>> { self.classes.iter() }
/// Returns a muteable iterator over the defined classes (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn classes_mut(&mut self) -> std::collections::hash_map::IterMut<std::string::String, Rc<RefCell<ClassEntry>>> { self.classes.iter_mut() }
/// Returns a consuming iterator over the defined classes (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
pub fn into_classes(&mut self) -> std::collections::hash_map::IntoIter<std::string::String, Rc<RefCell<ClassEntry>>> {
// Get the map
let mut map: HashMap<String, Rc<RefCell<ClassEntry>>> = HashMap::new();
mem::swap(&mut self.classes, &mut map);
// Return the consuming iterator
map.into_iter()
}
/// Returns whether this SymbolTable has any variables defined at all.
#[inline]
pub fn has_variables(&self) -> bool { !self.variables.is_empty() }
/// Returns the number of variables defined in the SymbolTable.
#[inline]
pub fn n_variables(&self) -> usize { self.variables.len() }
/// Returns an iterator over the defined variables (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn variables(&self) -> std::collections::hash_map::Iter<std::string::String, Rc<RefCell<VarEntry>>> { self.variables.iter() }
/// Returns a muteable iterator over the defined variables (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
#[inline]
pub fn variables_mut(&mut self) -> std::collections::hash_map::IterMut<std::string::String, Rc<RefCell<VarEntry>>> { self.variables.iter_mut() }
/// Returns a consuming iterator over the defined variables (as `(name, entry)` pairs).
///
/// # Returns
/// The iterator returned by the internal HashMap.
pub fn into_variables(&mut self) -> std::collections::hash_map::IntoIter<std::string::String, Rc<RefCell<VarEntry>>> {
// Get the map
let mut map: HashMap<String, Rc<RefCell<VarEntry>>> = HashMap::new();
mem::swap(&mut self.variables, &mut map);
// Return the consuming iterator
map.into_iter()
}
}