1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
// FLATTEN.rs
// by Lut99
//
// Created:
// 15 Sep 2022, 08:26:20
// Last edited:
// 12 Dec 2023, 15:57:21
// Auto updated?
// Yes
//
// Description:
//! Implements a traversal that flattens the scopes (i.e., symbol
//! tables) of the given program. This effectively brings all nested
//! scopes back to the toplevel.
//
use std::cell::{Ref, RefCell, RefMut};
use std::rc::Rc;
use brane_dsl::SymbolTable;
use brane_dsl::ast::{Block, Expr, Program, Stmt};
use brane_dsl::symbol_table::{ClassEntry, FunctionEntry, VarEntry};
use enum_debug::EnumDebug as _;
use crate::errors::AstError;
pub use crate::errors::FlattenError as Error;
use crate::state::{ClassState, CompileState, FunctionState, TableState, TaskState, VarState};
/***** TESTS *****/
#[cfg(test)]
mod tests {
use brane_dsl::ParserOptions;
use brane_shr::utilities::{create_data_index, create_package_index, test_on_dsl_files};
use specifications::data::DataIndex;
use specifications::package::PackageIndex;
use super::super::print::symbol_tables;
use super::*;
use crate::state::CompileState;
use crate::{CompileResult, CompileStage, compile_snippet_to};
/// Tests the traversal by generating symbol tables for every file.
#[test]
fn test_flatten() {
test_on_dsl_files("BraneScript", |path, code| {
// Start by the name to always know which file this is
println!("{}", (0..80).map(|_| '-').collect::<String>());
println!("File '{}' gave us:", path.display());
// Load the package index
let pindex: PackageIndex = create_package_index();
let dindex: DataIndex = create_data_index();
// Run up to this traversal
let mut state: CompileState = CompileState::new();
let program: Program =
match compile_snippet_to(&mut state, code.as_bytes(), &pindex, &dindex, &ParserOptions::bscript(), CompileStage::Flatten) {
CompileResult::Program(p, warns) => {
// Print warnings if any
for w in warns {
w.prettyprint(path.to_string_lossy(), &code);
}
p
},
CompileResult::Eof(err) => {
// Print the error
err.prettyprint(path.to_string_lossy(), &code);
panic!("Failed to flatten symbol tables (see output above)");
},
CompileResult::Err(errs) => {
// Print the errors
for e in errs {
e.prettyprint(path.to_string_lossy(), &code);
}
panic!("Failed to flatten symbol tables (see output above)");
},
_ => {
unreachable!();
},
};
// Now print the file for prettyness
symbol_tables::do_traversal(program, std::io::stdout()).unwrap();
println!("{}\n", (0..40).map(|_| "- ").collect::<String>());
print_state(&state.table, 0);
println!("{}\n\n", (0..80).map(|_| '-').collect::<String>());
});
}
}
/***** MACROS ******/
/// Generates the correct number of spaces for an indent.
macro_rules! indent {
($n_spaces:expr) => {
((0..$n_spaces).map(|_| ' ').collect::<String>())
};
}
/***** CONSTANTS *****/
/// Determines the increase in indentation for every nested level.
const INDENT_SIZE: usize = 4;
/***** HELPER FUNCTIONS *****/
/// Recursive print function that makes it just that easier to inspect the TableState.
///
/// # Arguments
/// - `state`: The TableState to print.
/// - `indent`: The current indent to print with.
///
/// # Returns
/// Nothing, but does print to stdout.
#[allow(dead_code)]
fn print_state(state: &TableState, indent: usize) {
// Print all items but in not in the conventional order
println!("{}Tasks:", indent!(indent));
for t in &state.tasks {
println!(
"{}{}[{}]::{}({}) -> {}",
indent!(INDENT_SIZE + indent),
t.package_name,
t.package_version,
t.name,
(0..t.signature.args.len()).map(|i| format!("{}: {}", t.arg_names[i], t.signature.args[i])).collect::<Vec<String>>().join(", "),
t.signature.ret,
);
}
println!("{}Classes:", indent!(indent));
for c in &state.classes {
println!("{}class {} {{", indent!(INDENT_SIZE + indent), c.name);
for p in &c.props {
println!("{}{}: {},", indent!(2 * INDENT_SIZE + indent), p.name, p.data_type);
}
for m in &c.methods {
let f: &FunctionState = &state.funcs[*m];
println!(
"{}&{}::{}({}) -> {},",
indent!(INDENT_SIZE + indent),
f.class_name.as_ref().unwrap(),
f.name,
(0..f.signature.args.len()).map(|i| format!("{}", f.signature.args[i])).collect::<Vec<String>>().join(", "),
f.signature.ret,
);
}
}
println!("{}Variables:", indent!(indent));
for v in &state.vars {
println!("{}{}: {}", indent!(INDENT_SIZE + indent), v.name, v.data_type);
}
// Finally, these recurse
println!("{}Functions:", indent!(indent));
for f in &state.funcs {
println!(
"{}{}{}({}) -> {}",
indent!(INDENT_SIZE + indent),
if let Some(class_name) = &f.class_name { format!("{class_name}::") } else { String::new() },
f.name,
(0..f.signature.args.len()).map(|i| format!("{}", f.signature.args[i])).collect::<Vec<String>>().join(", "),
f.signature.ret,
);
}
}
/// Doesn't just move the given (function) entry to the given CompileState, it also resolves the entry's index.
///
/// # Arguments
/// - `func`: The FunctionEntry to move.
/// - `table`: The TableState to add the entry to.
///
/// # Returns
/// Nothing, but does change both the given table and the given entry.
fn move_func(func: &Rc<RefCell<FunctionEntry>>, table: &mut TableState) -> Result<(), Error> {
// // Step zero: copy over any nested results
// for (name, avail) in &ftable.results {
// if table.results.insert(name.clone(), avail.clone()).is_some() {
// return Err(Error::IntermediateResultConflict { name: name.clone() });
// }
// }
// Step one: create the new FunctionState
let state: FunctionState = {
let entry: Ref<FunctionEntry> = func.borrow();
FunctionState {
name: entry.name.clone(),
signature: entry.signature.clone(),
class_name: entry.class_name.clone(),
range: entry.range.clone(),
}
};
// Step two: add the entry (and get the new index)
let index: usize = table.funcs.len();
table.funcs.push(state);
// Step three: resolve the index of the function
{
let mut entry: RefMut<FunctionEntry> = func.borrow_mut();
entry.index = index;
}
// Done
Ok(())
}
/// Doesn't just move the given (task) entry to the given CompileState, it also resolves the entry's index.
///
/// # Arguments
/// - `task`: The FunctionEntry (as a task) to move.
/// - `table`: The TableState to add the entry to.
///
/// # Returns
/// Nothing, but does change both the given table and the given entry.
fn move_task(task: &Rc<RefCell<FunctionEntry>>, table: &mut TableState) {
// Step one: create the new TaskState
let state: TaskState = {
let entry: Ref<FunctionEntry> = task.borrow();
TaskState {
name: entry.name.clone(),
signature: entry.signature.clone(),
arg_names: entry.arg_names.clone(),
requirements: entry.requirements.clone().unwrap(),
package_name: entry.package_name.clone().unwrap(),
package_version: entry.package_version.unwrap(),
range: entry.range.clone(),
}
};
// Step two: add the entry (and get the new index)
let index: usize = table.tasks.len();
table.tasks.push(state);
// Step three: resolve the index of the task
{
let mut entry: RefMut<FunctionEntry> = task.borrow_mut();
entry.index = index;
}
}
/// Doesn't just move the given (class) entry to the given CompileState, it also resolves the entry's index.
///
/// # Arguments
/// - `class`: The ClassEntry to move.
/// - `mtables`: A list of TableStates for every method in this table. They are mapped by method name.
/// - `table`: The TableState to add the entry to.
///
/// # Returns
/// Nothing, but does change both the given table and the given entry.
// fn move_class(class: &Rc<RefCell<ClassEntry>>, mtables: HashMap<String, TableState>, table: &mut TableState) {
fn move_class(class: &Rc<RefCell<ClassEntry>>, table: &mut TableState) -> Result<(), Error> {
// Step one: create the new ClassState
let state: ClassState = {
let entry: Ref<ClassEntry> = class.borrow();
// Collect the properties
let mut props: Vec<Rc<RefCell<VarEntry>>> = entry.symbol_table.borrow().variables().map(|(_, p)| p.clone()).collect();
props.sort_by(|a, b| a.borrow().name.to_lowercase().cmp(&b.borrow().name.to_lowercase()));
let props: Vec<VarState> = props
.into_iter()
.map(|v| {
let entry: Ref<VarEntry> = v.borrow();
VarState {
name: entry.name.clone(),
data_type: entry.data_type.clone(),
function_name: entry.function_name.clone(),
class_name: entry.class_name.clone(),
range: entry.range.clone(),
}
})
.collect();
// Collect the methods, by reference
let methods: Vec<usize> = {
let est: Ref<SymbolTable> = entry.symbol_table.borrow();
let mut methods: Vec<usize> = Vec::with_capacity(est.n_functions());
for (_, m) in est.functions() {
// Move the thing
move_func(m, table)?;
// Get the index to return
methods.push(m.borrow().index)
}
methods
};
// Use those to create the ClassState
ClassState {
name: entry.signature.name.clone(),
props,
methods,
package_name: entry.package_name.clone(),
package_version: entry.package_version,
range: entry.range.clone(),
}
};
// Step two: add the entry (and get the new index)
let index: usize = table.classes.len();
table.classes.push(state);
// Step three: resolve the index of the class
{
let mut entry: RefMut<ClassEntry> = class.borrow_mut();
entry.index = index;
}
// Done
Ok(())
}
/// Doesn't just move the given (variable) entry to the given CompileState, it also resolves the entry's index.
///
/// # Arguments
/// - `var`: The VarEntry to move.
/// - `table`: The TableState to add the entry to.
///
/// # Returns
/// Nothing, but does change both the given table and the given entry.
fn move_var(var: &Rc<RefCell<VarEntry>>, table: &mut TableState) {
// Step one: create the new VarState
let state: VarState = {
let entry: Ref<VarEntry> = var.borrow();
VarState {
name: entry.name.clone(),
data_type: entry.data_type.clone(),
function_name: entry.function_name.clone(),
class_name: entry.class_name.clone(),
range: entry.range.clone(),
}
};
// Step two: add the entry (and get the new index)
let index: usize = table.vars.len();
table.vars.push(state);
// Step three: resolve the index of the variable
{
let mut entry: RefMut<VarEntry> = var.borrow_mut();
entry.index = index;
}
}
/***** TRAVERSAL FUNCTIONS *****/
/// Passes a block, collecting all of its definitions (i.e., symbol table entries) into the given CompileState.
///
/// # Arguments
/// - `block`: The Block to traverse.
/// - `table`: The TableState to define everything in.
/// - `errors`: A list of errors that may be collected during traversal.
///
/// # Returns
/// Nothing, but does change contents of symbol tables.
///
/// # Errors
/// This function may error in the (statistically improbable) event that two intermediate result identifiers collide.
pub fn pass_block(block: &mut Block, table: &mut TableState, errors: &mut Vec<Error>) {
// We recurse to find any other blocks / functions. Only at definitions themselves do we inject them.
for s in &mut block.stmts {
pass_stmt(s, table, errors);
}
}
/// Passes a Stmt, collecting any definitions it makes into the given CompileState, effectively flattening its own symbol tables.
///
/// # Arguments
/// - `stmt`: The Stmt to traverse.
/// - `table`: The TableState to define everything in.
/// - `errors`: A list of errors that may be collected during traversal.
///
/// # Returns
/// Nothing, but does change contents of symbol tables.
///
/// # Errors
/// This function may error in the (statistically improbable) event that two intermediate result identifiers collide.
pub fn pass_stmt(stmt: &mut Stmt, table: &mut TableState, errors: &mut Vec<Error>) {
// Match the stmt
use Stmt::*;
#[allow(clippy::collapsible_match)]
match stmt {
Block { block } => {
pass_block(block, table, errors);
},
Import { st_funcs, st_classes, .. } => {
// Define all functions into the state (no need to do fancy nesting here, since it's externally defined -> nothing we (can) worry about)
for f in st_funcs.as_ref().unwrap() {
move_task(f, table);
}
// Then do all classes
for c in st_classes.as_ref().unwrap() {
if let Err(err) = move_class(c, table) {
errors.push(err);
}
}
},
FuncDef { code, st_entry, .. } => {
// Add the function with an empty table first, just so that it exists
let entry: &Rc<RefCell<FunctionEntry>> = st_entry.as_ref().unwrap();
if let Err(err) = move_func(entry, table) {
errors.push(err);
}
// Now build the correct table by defining the function's arguments
for a in &entry.borrow().params {
move_var(a, table);
}
// Then add any other body statements.
pass_block(code, table, errors);
},
ClassDef { methods, st_entry, .. } => {
// Define the class first with dummy tables to have it exist in the nested ones
if let Err(err) = move_class(st_entry.as_ref().unwrap(), table) {
errors.push(err);
}
// We can then construct the proper tables
for m in methods {
// Match on a function explicitly due to us needing to know its name
if let Stmt::FuncDef { code, st_entry, .. } = &mut **m {
// Define the function's arguments first
{
let entry: Ref<FunctionEntry> = st_entry.as_ref().unwrap().borrow();
for a in &entry.params {
move_var(a, table);
}
}
// Then add any other body statements.
pass_block(code, table, errors);
} else {
panic!("Method in ClassDef is not a FunctionDef");
};
}
},
Return { expr, .. } => {
if let Some(expr) = expr {
pass_expr(expr, table);
}
},
If { cond, consequent, alternative, .. } => {
pass_expr(cond, table);
pass_block(consequent, table, errors);
if let Some(alternative) = alternative {
pass_block(alternative, table, errors);
}
},
For { initializer, condition, consequent, .. } => {
pass_stmt(initializer, table, errors);
pass_expr(condition, table);
pass_block(consequent, table, errors);
},
While { condition, consequent, .. } => {
pass_expr(condition, table);
pass_block(consequent, table, errors);
},
Parallel { blocks, st_entry, .. } => {
// Continue traversal first (the entry is not in scope for that bit)
for b in blocks {
pass_block(b, table, errors);
}
// Define the variable if it exists
if let Some(st_entry) = st_entry {
move_var(st_entry, table);
}
},
LetAssign { value, st_entry, .. } => {
// Recurse
pass_expr(value, table);
// Define the variable
move_var(st_entry.as_ref().unwrap(), table);
},
Assign { value, .. } => {
pass_expr(value, table);
},
Expr { expr, .. } => {
pass_expr(expr, table);
},
// The rest neither recurses nor defines
Empty {} => {},
Attribute(_) | AttributeInner(_) => panic!("Encountered {:?} in flatten traversal", stmt.variant()),
}
}
/// Passes an expression to look for intermediate results to put in the global table, as well as any data definitions.
///
/// # Arguments
/// - `expr`: The expression to traverse.
/// - `table`: The TableState to define the intermediate results in.
/// - `errors`: A list of errors that may be collected during traversal.
///
/// # Returns
/// Nothing, but does change contents of symbol tables.
///
/// # Errors
/// This function may error in the (statistically improbable) event that two intermediate result identifiers collide.
fn pass_expr(expr: &mut Expr, _table: &mut TableState) {
use Expr::*;
match expr {
Cast { expr, .. } => {
pass_expr(expr, _table);
},
Call { expr, args, .. } => {
// Recurse into the rest
pass_expr(expr, _table);
for a in args {
pass_expr(a, _table);
}
},
Array { values, .. } => {
for v in values {
pass_expr(v, _table);
}
},
ArrayIndex { array, index, .. } => {
pass_expr(array, _table);
pass_expr(index, _table);
},
UnaOp { expr, .. } => {
pass_expr(expr, _table);
},
BinOp { lhs, rhs, .. } => {
pass_expr(lhs, _table);
pass_expr(rhs, _table);
},
Proj { lhs, rhs, .. } => {
pass_expr(lhs, _table);
pass_expr(rhs, _table);
},
Instance { properties, .. } => {
// NOTE: Adding datasets to the workflow is left for a runtime set, since we do not know yet how to access it.
// Recurse the properties
for p in properties {
pass_expr(&mut p.value, _table);
}
},
// The rest either is not relevant, does not recurse or will never occur here
_ => {},
}
}
/***** LIBRARY *****/
/// Flattens the symbol tables in the given AST to only have a global and function-wide scope.
///
/// Note that this cannot lead to conflicts, since variable names (should) have already been resolved.
///
/// # Arguments
/// - `state`: The CompileState that we use to pre-define and flatten scopes in.
/// - `root`: The root node of the tree on which this compiler pass will be done.
///
/// # Returns
/// The same nodes as went in, but now with a flattened symbol table structure (i.e., nested blocks will have empty tables).
///
/// # Errors
/// This pass doesn't really error, but the option is here for convention purposes.
pub fn do_traversal(state: &mut CompileState, root: Program) -> Result<Program, Vec<AstError>> {
let mut root = root;
// Iterate over all statements to prune the tree
let mut errors: Vec<Error> = vec![];
pass_block(&mut root.block, &mut state.table, &mut errors);
// Done
if errors.is_empty() { Ok(root) } else { Err(errors.into_iter().map(|e| e.into()).collect()) }
}