1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
// COMPILE.rs
// by Lut99
//
// Created:
// 31 Aug 2022, 11:32:04
// Last edited:
// 31 Jan 2024, 11:35:39
// Auto updated?
// Yes
//
// Description:
//! Implements the traversal in which the `brane-dsl` AST is finally
//! converted to the `brane-ast` AST (i.e., BraneScript is compiled to a
//! Workflow).
//
use std::cell::{Ref, RefCell};
use std::collections::{HashMap, HashSet};
use std::rc::Rc;
use std::sync::Arc;
use brane_dsl::ast as dsl;
use brane_dsl::spec::MergeStrategy;
use brane_dsl::symbol_table::{FunctionEntry, VarEntry};
use enum_debug::EnumDebug as _;
use log::warn;
use specifications::data::DataName;
use crate::ast;
use crate::ast_unresolved::UnresolvedWorkflow;
use crate::edgebuffer::EdgeBuffer;
use crate::errors::AstError;
use crate::state::{CompileState, TableState};
use crate::warnings::AstWarning;
pub use crate::warnings::CompileWarning as Warning;
/***** TESTS *****/
#[cfg(test)]
mod tests {
use brane_dsl::ParserOptions;
use brane_shr::utilities::{create_data_index, create_package_index, test_on_dsl_files};
use specifications::data::DataIndex;
use specifications::package::PackageIndex;
use super::super::print::ast_unresolved;
use super::*;
use crate::{CompileResult, CompileStage, compile_snippet_to};
/// Tests the traversal by generating symbol tables for every file.
#[test]
fn test_compile() {
test_on_dsl_files("BraneScript", |path, code| {
// Start by the name to always know which file this is
println!("{}", (0..80).map(|_| '-').collect::<String>());
println!("File '{}' gave us:", path.display());
// Load the package index
let pindex: PackageIndex = create_package_index();
let dindex: DataIndex = create_data_index();
// Run up to this traversal
let mut state: CompileState = CompileState::new();
let workflow: UnresolvedWorkflow =
match compile_snippet_to(&mut state, code.as_bytes(), &pindex, &dindex, &ParserOptions::bscript(), CompileStage::Compile) {
CompileResult::Unresolved(wf, warns) => {
// Print warnings if any
for w in warns {
w.prettyprint(path.to_string_lossy(), &code);
}
wf
},
CompileResult::Eof(err) => {
// Print the error
err.prettyprint(path.to_string_lossy(), &code);
panic!("Failed to compile to workflow (see output above)");
},
CompileResult::Err(errs) => {
// Print the errors
for e in errs {
e.prettyprint(path.to_string_lossy(), &code);
}
panic!("Failed to compile to workflow (see output above)");
},
_ => {
unreachable!();
},
};
// Now print the file for prettyness
ast_unresolved::do_traversal(&state, workflow, std::io::stdout()).unwrap();
println!("{}\n\n", (0..80).map(|_| '-').collect::<String>());
});
}
}
/***** COMPILATION FUNCTIONS *****/
/// Compiles a function's body to the given edge buffer.
///
/// # Arguments
/// - `index`: The index of the function in the workflow table.
/// - `args`: The arguments of the function, in-order.
/// - `code`: The function's body as a `Block`.
/// - `f_edges`: The map to generate new function bodies in.
/// - `table`: The TableState that we use to resolve definitions against.
/// - `warnings`: A list that will be used to catch warnings be thrown by the compiler.
///
/// # Returns
/// Nothing, but does extend the function map with a new edge buffer containing the compiled edges from the given body.
///
/// # Panics
/// This function panics if the given statement is _not_ a `Stmt::FuncDef`.
fn compile_func_def(
index: usize,
args: Vec<Rc<RefCell<VarEntry>>>,
code: dsl::Block,
f_edges: &mut HashMap<usize, EdgeBuffer>,
table: &TableState,
warnings: &mut Vec<Warning>,
) {
// We compile to a separate list that will become the function (it will already have return junk)
let mut func_edges: EdgeBuffer = EdgeBuffer::new();
// Note, important: first write the arguments on the stack to its respective variables (we go back-to-front)
for a in args.into_iter().rev() {
let def: usize = a.borrow().index;
func_edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarDec { def }, ast::EdgeInstr::VarSet { def }], next: usize::MAX });
}
// Compile the function itself
pass_block(code, &mut func_edges, f_edges, table, warnings);
// Add the list to the function map
f_edges.insert(index, func_edges);
// Done
}
/***** TRAVERSAL FUNCTIONS *****/
// /// Writes all of the definitions in the current block to the given unresolved workflow, and then also that of all nested blocks.
// ///
// /// # Arguments
// /// - `state`: The CompileState that we use to generate unique identifiers for the variables.
// /// - `block`: The Block to traverse.
// /// - `workflow`: The UnresolvedWorkflow to define everything in.
// ///
// /// # Returns
// /// Nothing, but does define all symbol table entries in the workflow's toplevel table.
// fn define_block(state: &mut CompileState, block: &dsl::Block, workflow: &mut UnresolvedWorkflow) {
// // Define everything in this block
// {
// let st: Ref<SymbolTable> = block.table.borrow();
// // Add the function entries
// workflow.funcs.reserve(st.n_functions() / 2);
// workflow.tasks.reserve(st.n_functions() / 2);
// for (_, f) in st.functions() {
// // Get a muteable borrow of the entry and set its inde
// let mut f: RefMut<FunctionEntry> = f.borrow_mut();
// // Split on function or task
// match f.package_name.clone() {
// Some(package_name) => {
// // Compute task
// f.index = workflow.tasks.len();
// workflow.tasks.push(ast::TaskDef::Compute{
// package : package_name.clone(),
// version : f.package_version.clone().unwrap(),
// function : ast::FunctionDef {
// name : f.name.clone(),
// args : f.signature.args.iter().map(|a| a.into()).collect(),
// ret : (&f.signature.ret).into(),
// },
// args_names : f.arg_names.clone(),
// });
// },
// None => {
// // Local function
// f.index = workflow.funcs.len();
// workflow.funcs.push(ast::FunctionDef{
// name : f.name.clone(),
// args : f.signature.args.iter().map(|a| a.into()).collect(),
// ret : (&f.signature.ret).into(),
// });
// },
// }
// }
// // Add the class entries
// workflow.classes.reserve(st.n_classes());
// for (_, c) in st.classes() {
// // Get a muteable borrow of the entry and set its inde
// let mut c: RefMut<ClassEntry> = c.borrow_mut();
// c.index = workflow.classes.len();
// // Get the properties in alphabetical order
// let cst: Ref<SymbolTable> = c.symbol_table.borrow();
// let mut props: Vec<VarDef> = cst.variables().map(|v| ast::VarDef{ name: v.0.clone(), data_type: (&v.1.borrow().data_type).into() }).collect();
// props.sort_by(|a, b| a.name.to_lowercase().cmp(&b.name.to_lowercase()));
// // Add any class methods first
// workflow.funcs.reserve(st.n_functions());
// for (_, f) in cst.functions() {
// // Get a muteable borrow of the entry and set its inde
// let mut f: RefMut<FunctionEntry> = f.borrow_mut();
// f.index = workflow.funcs.len();
// // Panic if package name
// if f.package_name.is_some() { panic!("Encountered task as class method; this should never happen!"); }
// // Add the function
// workflow.funcs.push(ast::FunctionDef{
// name : f.name.clone(),
// args : f.signature.args.iter().map(|a| a.into()).collect(),
// ret : (&f.signature.ret).into(),
// });
// }
// // Add the entry as a ClassEntry
// workflow.classes.push(ast::ClassDef{
// name : c.signature.name.clone(),
// package : c.package_name.clone(),
// version : c.package_version.clone(),
// props,
// methods : cst.functions().map(|f| {
// let f: Ref<FunctionEntry> = f.1.borrow();
// f.index
// }).collect(),
// });
// }
// // // Add the variable entries
// // workflow.vars.reserve(st.n_variables());
// // for (_, v) in st.variables() {
// // // Get a muteable borrow of the entry and set its inde
// // let mut v: RefMut<VarEntry> = v.borrow_mut();
// // v.index = workflow.vars.len();
// // // Skip if it's a class variable (those are used for definition only, but cannot carry values as they are duplicate for every instance of the class).
// // if v.class_name.is_some() { continue; }
// // // Add the entry as a VarEntry
// // workflow.vars.push(ast::VarDef{
// // name : v.name.clone(),
// // data_type : (&v.data_type).into(),
// // });
// // }
// // We don't have to add the variable entries to the table, but we can give them an identifier.
// for (_, v) in st.variables() {
// // Get a muteable borrow of the entry and set its inde
// let mut v: RefMut<VarEntry> = v.borrow_mut();
// v.index = state.var_id;
// state.var_id += 1;
// }
// }
// // Now iterate through the statements to find all other blocks
// for s in &block.stmts {
// use dsl::Stmt::*;
// match s {
// Block { block, .. } => {
// define_block(state, block, workflow);
// },
// FuncDef{ code, .. } => {
// define_block(state, code, workflow);
// },
// ClassDef{ methods, .. } => {
// // We recurse to compile the function bodies (not the functions themselves, since they have already been added).
// for m in methods {
// // Compile the function's body to a new function buffer in the function map
// if let FuncDef{ code, .. } = &**m {
// define_block(state, code, workflow);
// } else {
// panic!("Class method is not a FuncDef; this should never happen!");
// }
// }
// },
// If { consequent, alternative, .. } => {
// define_block(state, consequent, workflow);
// if let Some(alternative) = alternative {
// define_block(state, alternative, workflow);
// }
// },
// While{ consequent, .. } => {
// define_block(state, consequent, workflow);
// },
// On{ block, .. } => {
// define_block(state, block, workflow);
// },
// Parallel{ blocks, .. } => {
// // Write the branches to separate buffers
// for b in blocks {
// match &**b {
// Block{ block, .. } => { define_block(state, block, workflow); },
// On{ block, .. } => { define_block(state, block, workflow); },
// _ => { panic!("Found non-Block, non-On statement as a Parallel block"); }
// }
// }
// },
// // We don't care about the rest (or it does not occur anymore)
// _ => {},
// }
// }
// }
/// Traverses Blocks, which are compiled to a series of edges implementing it.
///
/// # Arguments
/// - `block`: The Block to traverse.
/// - `edges`: The current list of edges to which we compile. Will probably reference one of the edges in the workflow.
/// - `f_edges`: The map to generate new function bodies in.
/// - `table`: The TableState that we use to resolve definitions against.
/// - `warnings`: A list that will be used to catch warnings be thrown by the compiler.
///
/// # Returns
/// Nothing, but does add the edges in the 'edges' and `workflow` structures.
fn pass_block(block: dsl::Block, edges: &mut EdgeBuffer, f_edges: &mut HashMap<usize, EdgeBuffer>, table: &TableState, warnings: &mut Vec<Warning>) {
// Just compile the statements in the block.
let mut decs: Vec<usize> = vec![];
for s in block.stmts {
// Before we pass the statement, check if it's a variable we should think about undeclaring
match &s {
dsl::Stmt::LetAssign { st_entry, .. } => {
let entry: Ref<VarEntry> = st_entry.as_ref().unwrap().borrow();
decs.push(entry.index);
},
dsl::Stmt::Parallel { st_entry: Some(st_entry), .. } => {
let entry: Ref<VarEntry> = st_entry.borrow();
decs.push(entry.index);
},
// The rest doesn't declare
_ => {},
}
// Pass the statement to compile it
pass_stmt(s, edges, f_edges, table, warnings);
}
// HOWEVER, also write out-of-scope functions for all variables declared within
// Note, though, we don't do main to be friendly to snippet execution
if block.table.borrow().parent.is_some() {
for def in decs {
// Write its undeclare
edges.insert_at_end(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarUndec { def }], next: usize::MAX });
}
}
// Done
}
/// Traveres Stmts, which are compiled to one or mutiple edges implementing it.
///
/// # Arguments
/// - `stmt`: The Stmt to traverse.
/// - `edges`: The current list of edges to which we compile. Will probably reference one of the edges in the workflow.
/// - `f_edges`: The map to generate new function bodies in.
/// - `table`: The TableState that we use to resolve definitions against.
/// - `warnings`: A list that will be used to catch warnings be thrown by the compiler.
///
/// # Returns
/// Nothing, but does add the edges in the 'edges' and `workflow` structures.
fn pass_stmt(stmt: dsl::Stmt, edges: &mut EdgeBuffer, f_edges: &mut HashMap<usize, EdgeBuffer>, table: &TableState, warnings: &mut Vec<Warning>) {
// Match on the stmt itself
use dsl::Stmt::*;
match stmt {
Block { block, .. } => {
// Simply recurse the block
pass_block(*block, edges, f_edges, table, warnings);
},
FuncDef { code, st_entry, .. } => {
// Get the index of the definition (and its parameters)
let (index, args): (usize, Vec<Rc<RefCell<VarEntry>>>) = {
let entry: Ref<FunctionEntry> = st_entry.as_ref().unwrap().borrow();
(entry.index, entry.params.clone())
};
// Compile the function's body to a new function buffer in the function ma
compile_func_def(index, args, *code, f_edges, table, warnings);
},
ClassDef { methods, .. } => {
// We recurse to compile the function bodies (not the functions themselves, since they have already been added).
for m in methods {
// Compile the function's body to a new function buffer in the function map
if let FuncDef { code, st_entry, .. } = *m {
// Get the index of the definition (and its parameters)
let (index, args): (usize, Vec<Rc<RefCell<VarEntry>>>) = {
let entry: Ref<FunctionEntry> = st_entry.as_ref().unwrap().borrow();
(entry.index, entry.params.clone())
};
// Compile the function's body to a new function buffer in the function map
compile_func_def(index, args, *code, f_edges, table, warnings);
} else {
panic!("Class method is not a FuncDef; this should never happen!");
}
}
},
Return { expr, output, .. } => {
// Compile the expression first as separate edges
if let Some(expr) = expr {
pass_expr(expr, edges, table);
}
// End the branch instead of writing a Return
edges.write_stop(ast::Edge::Return { result: output.iter().map(|data| DataName::from(data.clone())).collect() });
},
If { cond, consequent, alternative, .. } => {
// First, prepare the stack by running the condition
pass_expr(cond, edges, table);
// Next, compile the consequent and alternative to separate (new) EdgeBuffers.
let mut cons_edges: EdgeBuffer = EdgeBuffer::new();
pass_block(*consequent, &mut cons_edges, f_edges, table, warnings);
if !cons_edges.fully_returns() {
cons_edges.write_end();
}
let alt_edges: Option<EdgeBuffer> = alternative.map(|a| {
let mut res: EdgeBuffer = EdgeBuffer::new();
pass_block(*a, &mut res, f_edges, table, warnings);
if !res.fully_returns() {
res.write_end();
}
res
});
// Write it as a branch to the main list
edges.write_branch(Some(cons_edges), alt_edges);
},
While { condition, consequent, .. } => {
// Write the condition as a 'mini-function' that ends in a Return
let mut cond_edges: EdgeBuffer = EdgeBuffer::new();
pass_expr(condition, &mut cond_edges, table);
if !cond_edges.fully_returns() {
cond_edges.write_end();
}
// Write the consequence to a separate buffer
let mut cons_edges: EdgeBuffer = EdgeBuffer::new();
pass_block(*consequent, &mut cons_edges, f_edges, table, warnings);
if !cons_edges.fully_returns() {
cons_edges.write_end();
}
// Write them both a loop in the edges list
edges.write_loop(cond_edges, cons_edges);
},
Parallel { blocks, merge, st_entry, .. } => {
// Write the branches to separate buffers
let mut branches: Vec<EdgeBuffer> = Vec::with_capacity(blocks.len());
for b in blocks {
let mut b_edges: EdgeBuffer = EdgeBuffer::new();
pass_block(b, &mut b_edges, f_edges, table, warnings);
if !b_edges.fully_returns() {
b_edges.write_stop(ast::Edge::Return { result: HashSet::new() });
}
branches.push(b_edges);
}
// Add that as a parallel statement
edges.write_parallel(branches, merge.map(|m| MergeStrategy::from(m.value)).unwrap_or(MergeStrategy::None));
// If required, add a variable set afterwards
if let Some(st_entry) = st_entry {
// Get the index of the definition
let index: usize = st_entry.borrow().index;
// Write the edge setting its value
edges.write(ast::Edge::Linear {
instrs: vec![ast::EdgeInstr::VarDec { def: index }, ast::EdgeInstr::VarSet { def: index }],
next: usize::MAX,
});
}
},
// Run let assigns as assigns, since the actual variable creation and removal is done at runtime
LetAssign { value, st_entry, .. } => {
let def: usize = st_entry.unwrap().borrow().index;
// We always write a declare instruction first
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarDec { def }], next: usize::MAX });
// If there is a non-null value, write a set immediately after
if let dsl::Expr::Literal { literal: dsl::Literal::Null { .. } } = value {
/* Do nothing */
} else {
// Prepare the stack by writing the expression
pass_expr(value, edges, table);
// Write the instruction
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarSet { def }], next: usize::MAX });
}
},
Assign { value, st_entry, .. } => {
// Prepare the stack by writing the expression
pass_expr(value, edges, table);
// Write the instruction
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarSet { def: st_entry.unwrap().borrow().index }], next: usize::MAX });
},
Expr { expr, data_type, .. } => {
// If the expression's type is any, push the dynamic marker
if let brane_dsl::DataType::Any = &data_type {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::PopMarker {}], next: usize::MAX });
}
// Simply write the expression edges + a pop if required by the data type
pass_expr(expr, edges, table);
match data_type {
// Write nothing if the statement does not return
brane_dsl::DataType::Void => {},
// Write the other half of the dynamic pop
brane_dsl::DataType::Any => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::DynamicPop {}], next: usize::MAX });
},
// Otherwise, write a static pop
_ => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Pop {}], next: usize::MAX });
},
}
},
// We don't care about the rest (or it does not occur anymore)
Import { .. } | Empty {} => {},
Attribute(_) | AttributeInner(_) | For { .. } => panic!("Encountered {:?} in compile traversal", stmt.variant()),
}
}
/// Traveres Expr, which are compiled to one or mutiple edges implementing it.
///
/// Typically, this is a `Edge::Linear` (unless we encounter an external function call).
///
/// # Arguments
/// - `expr`: The Expr to traverse.
/// - `edges`: The current list of edges to which we compile. Will probably reference one of the edges in the workflow.
/// - `table`: The TableState to resolve class references in.
///
/// # Returns
/// Nothing, but does add the edges in the `edges` structure.
fn pass_expr(expr: dsl::Expr, edges: &mut EdgeBuffer, _table: &TableState) {
// Switch on the type of expression
use dsl::Expr::*;
#[allow(clippy::collapsible_match)]
match expr {
Cast { expr, target, .. } => {
// Write the expression first
pass_expr(*expr, edges, _table);
// Insert a linear edge with the cast instruction
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Cast { res_type: (&target).into() }], next: usize::MAX });
},
Call { expr, args, st_entry, locations, input, result, metadata, range: _ } => {
// First, write the arguments followed by the call expression
for a in args {
pass_expr(*a, edges, _table);
}
pass_expr(*expr, edges, _table);
// We now switch depending on the type of function called
#[allow(clippy::unnecessary_unwrap)]
if st_entry.is_some() && st_entry.as_ref().unwrap().borrow().package_name.is_some() {
// Assert that the result is an intermediate result
if result.len() > 1 {
panic!("Found external call with more than one results as output");
}
let result: Option<String> = result.iter().next().map(|result| {
if let dsl::Data::IntermediateResult(result) = result {
result.clone()
} else {
panic!("Found Data as output of task; this should never happen!");
}
});
// It's an external call; replace with a Node edge (so sorry everyone)
edges.write(ast::Edge::Node {
task: st_entry.unwrap().borrow().index,
locs: locations.into(),
at: None,
input: input.into_iter().map(|d| (d.into(), None)).collect(),
result,
metadata: metadata.into_iter().map(|md| ast::Metadata { owner: md.owner, tag: md.tag, signature: None }).collect(),
next: usize::MAX,
});
} else {
// It's a local call; replace with a Call edge
edges.write(ast::Edge::Call {
input: input.into_iter().map(|d| d.into()).collect(),
result: result.iter().map(|data| DataName::from(data.clone())).collect(),
next: usize::MAX,
});
}
},
Array { values, data_type, .. } => {
// Compute all of the expressions first
let values_len: usize = values.len();
for v in values {
pass_expr(*v, edges, _table);
}
// Now add the Array instruction in a linear edge
edges.write(ast::Edge::Linear {
instrs: vec![ast::EdgeInstr::Array { length: values_len, res_type: (&data_type).into() }],
next: usize::MAX,
});
},
ArrayIndex { array, index, data_type, .. } => {
// Write the array, then the index
pass_expr(*array, edges, _table);
pass_expr(*index, edges, _table);
// Write the index instruction in a linear edge
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::ArrayIndex { res_type: (&data_type).into() }], next: usize::MAX });
},
UnaOp { op, expr, .. } => {
// We can always write the expression first
pass_expr(*expr, edges, _table);
// Match on the operator to write the proper instruction
match op {
dsl::UnaOp::Neg { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Neg {}], next: usize::MAX }),
dsl::UnaOp::Not { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Not {}], next: usize::MAX }),
// The rest should occur anymore
op => {
warn!("Encountered operation '{:?}' that shouldn't occur anymore", op);
},
};
},
BinOp { op, lhs, rhs, .. } => {
// We can always write the lefthand-side followed by the righthand-side first
pass_expr(*lhs, edges, _table);
pass_expr(*rhs, edges, _table);
// Match the operator to write the proper instruction
match op {
dsl::BinOp::And { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::And {}], next: usize::MAX }),
dsl::BinOp::Or { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Or {}], next: usize::MAX }),
dsl::BinOp::Add { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Add {}], next: usize::MAX }),
dsl::BinOp::Sub { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Sub {}], next: usize::MAX }),
dsl::BinOp::Mul { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Mul {}], next: usize::MAX }),
dsl::BinOp::Div { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Div {}], next: usize::MAX }),
dsl::BinOp::Mod { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Mod {}], next: usize::MAX }),
dsl::BinOp::Eq { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Eq {}], next: usize::MAX }),
dsl::BinOp::Ne { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Ne {}], next: usize::MAX }),
dsl::BinOp::Gt { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Gt {}], next: usize::MAX }),
dsl::BinOp::Ge { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Ge {}], next: usize::MAX }),
dsl::BinOp::Lt { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Lt {}], next: usize::MAX }),
dsl::BinOp::Le { .. } => edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Le {}], next: usize::MAX }),
};
},
Proj { lhs, rhs, .. } => {
// We resolve at runtime; push the lefthand-side...
pass_expr(*lhs, edges, _table);
// ...get the name in the righthand-side...
let field: String = if let dsl::Expr::Identifier { name, .. } = *rhs {
name.value
} else {
panic!("Encountered a non-Identifier righthand-side of project expression");
};
// ...and write the project instruction
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Proj { field }], next: usize::MAX });
},
Instance { mut properties, st_entry, .. } => {
// We always order the properties alphabetically to push them
properties.sort_by(|p1, p2| p1.name.value.to_lowercase().cmp(&p2.name.value.to_lowercase()));
for p in properties {
pass_expr(*p.value, edges, _table);
}
// Bundle them in the instance
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Instance { def: st_entry.unwrap().borrow().index }], next: usize::MAX });
},
VarRef { st_entry, .. } => {
// Push a simple var get
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::VarGet { def: st_entry.unwrap().borrow().index }], next: usize::MAX });
},
Identifier { st_entry, .. } => {
// Dump the function if it has one
if let Some(entry) = st_entry {
// Push a Function onto the stack if it's not a task (otherwise, the node will properly reference it)
let e: Ref<FunctionEntry> = entry.borrow();
if e.package_name.is_none() {
// It's a local function
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Function { def: e.index }], next: usize::MAX });
}
}
},
Literal { literal, .. } => {
// Match the literal itself
match literal {
dsl::Literal::Null { .. } => panic!("A Literal::Null should not be compiled directly"),
dsl::Literal::Boolean { value, .. } => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Boolean { value }], next: usize::MAX })
},
dsl::Literal::Integer { value, .. } => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Integer { value }], next: usize::MAX })
},
dsl::Literal::Real { value, .. } => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::Real { value }], next: usize::MAX })
},
dsl::Literal::String { value, .. } => {
edges.write(ast::Edge::Linear { instrs: vec![ast::EdgeInstr::String { value }], next: usize::MAX })
},
// The rest is not relevant
dsl::Literal::Semver { .. } | dsl::Literal::Void { .. } => {},
};
},
// The rest either never occurs or we don't care about
_ => {},
}
}
/***** LIBRARY *****/
/// Compiles the given `brane-dsl` AST into a `brane-ast` AST.
///
/// Note that the symbol tables must already have been constructed, as well as type analysis and location analysis.
///
/// # Arguments
/// - `root`: The root node of the tree on which this compiler pass will be done.
/// - `warnings`: A list that will collect any warnings during compilation. If it's empty, then it may be assumed for warnings occurred.
///
/// # Returns
/// A new Workflow that contains the compiled program. However, its inter-edge links will still have to be resolved.
///
/// # Errors
/// This pass doesn't error, but might return one for convention purposes.
///
/// # Panics
/// This function may panic if any of the previous passes did not do its job, and the given Program is still ill-formed.
pub fn do_traversal(state: &CompileState, root: dsl::Program, warnings: &mut Vec<AstWarning>) -> Result<UnresolvedWorkflow, Vec<AstError>> {
let mut warns: Vec<Warning> = vec![];
// Then we can compile the program block to a series of edges
let mut edges: EdgeBuffer = EdgeBuffer::new();
let mut f_edges: HashMap<usize, EdgeBuffer> = HashMap::new();
pass_block(root.block, &mut edges, &mut f_edges, &state.table, &mut warns);
// Add a Stop edge to the main workflow
if !edges.fully_returns() {
edges.write_stop(ast::Edge::Stop {});
}
// Verify all functions fully return
for (i, f) in &f_edges {
if !f.fully_returns() {
panic!("Function {} ({})'s edge stream does not fully return", *i, state.table.funcs[*i].name);
}
}
// TODO: Optimize program size and reasonability by joining edges as much as possible.
// -> see `workflow_optimize.rs`
// [TODO]: Add optimization pass that groups as many edges together as possible, possibly even calling upong well-defined meta-edges that are easier to reason about.
// -> see also `workflow_optimize.rs`??
// Now build a new workflow and done
let mut wf: UnresolvedWorkflow = UnresolvedWorkflow::new(edges, f_edges);
wf.metadata = Arc::new(root.metadata.into_iter().map(|md| ast::Metadata { owner: md.owner, tag: md.tag, signature: None }).collect());
warnings.append(&mut warns.into_iter().map(|w| w.into()).collect::<Vec<AstWarning>>());
Ok(wf)
}