
The EPI Framework
Tim Müller (CCI Group, UvA)

t.muller@uva.nl
UMC Utrecht SIG - 23 October 2023

mailto:t.muller@uva.nl


Before we begin

- I’m a computer scientist
- But I’ll try to keep it nice and concrete :)
- Except when you see 

- Then it does get technical

- Also note, the EPI Framework used to be called Brane, so I’ll use them 
interchangeably!

2/31



I. Introduction



Background

- There is a distributed dataset
- Spread out over multiple hospitals (domains)

- Amy is a data scientist who wants to analyse it
- However: data is super-sensitive!

- How can Amy safely analyse the data?

4/31



Naive approach

- Amy might request all domains for access to data
- Domains then send back the data in full
- She performs her steps locally
- Evaluation

- Requires a lot of trust in Amy!
- No oversight to what she does

- Very tedious to arrange
- Manual decision making
- Manual preprocessing

- Might be hard to share data securely

5/31



Better approach

- One hospital creates secure environment
- Hospitals make data available in this environment

- Amy can perform her work “on-site”
- Evaluation

- Still requires trust in Amy
- Better, but still limited oversight

- Still tedious to arrange
- Manual decision making still occurs
- Per-researcher setup

- Might be hard to share data securely

6/31



EPI approach

- Amy can formalise her steps (workflow)
- Domains can formalise their regulations (policy)
- EPI Framework can perform the computation

- While ensuring regulations are not violated
- Evaluation

- Requires minimal trust in Amy
- Her plan can be analysed before computation

- Less tedious to arrange
- Manual decision making only required sometimes
- Policies pre-defined (easily applied)

7/31



The EPI Framework

- Built to share data for workflow, policy-compliant
- The framework consists of two components:

- The central component has the overview and accepts 
incoming work

- The local components (owned by hospitals) has the data 
and performs the work

8/31



Separation of concerns

- Two central-side roles
- Data scientists
- Software engineer

- Two local-side roles
- System administrator

- Manages the components
- Policy expert

9/31



II. Workflows
Data scientists & Software engineers



Recipes as workflows

- Recipes (as in cooking) are perfect examples of workflows
- Defines a series of steps/tasks to perform
- Mentions only relevant details

- e.g., it doesn’t say which chef executes a task
- Tasks may be dependent on each other Pasta Broccolo

1. Clean the broccoli and 
cut it

2. Boil the broccoli pieces 
for 5 minutes, and the 
pasta for 12 minutes

3. Serve with cheese

11/31



Formalising recipes

- Recipes (workflows) can be represented as graphs
- Nodes are tasks
- Edges are dependencies

Pasta Broccolo

1. Clean the broccoli and 
cut it

2. Boil the broccoli pieces 
for 5 minutes, and the 
pasta for 12 minutes

3. Serve with cheese

12/31



Formalising recipes

- Recipes (workflows) can be represented as graphs
- Nodes are tasks
- Edges are dependencies

Boiling broccoli pieces

1. Get pan
2. Pour water in pan
3. Put pan on furnace
4. Put on lid
5. Light fire
6. Wait until bubbles
7. Add broccoli to pan
8. Wait 5 minutes
9. Turn off fire

10. Pour out water

13/31



Generalising tasks

- However, it’s nice if some tasks can be parameterized
- This means we can re-use tasks!

- …even from previous workflows

Boiling X

1. Get pan
2. Pour water in pan
3. Put pan on furnace
4. Put on lid
5. Light fire
6. Wait until bubbles
7. Add X to pan
8. Wait Y minutes
9. Turn off fire

10. Pour out water

14/31



Separation of concerns

- If we can re-use tasks, we can now write them beforehand
- Which means now specialized people can do different things in parallel!

15/31



Formalising programs

- We can formalize programs in exactly the same way
- Also only describe high-level details

- Workflows written by scientists, tasks written by engineers

16/31



Formalising workflows, practically

- The EPI Framework uses BraneScript
- Tasks are represented as functions, dependencies are derived
- Other methods supported in the future

17/31



Formalising tasks, practically

- Tasks are represented as functions
- Functions are grouped in packages
- Packages are implemented as Docker containers

- Inputs read from environment variables
- Output written to stdout

- Run isolated (input and output dictated by Brane)

18/31



Takeaways

- Workflows formalise analyses of data scientists
- Encoded as a series of tasks with dependencies
- Represented as a graph

- Doing so, they are high-level programs
- Only details relevant for the scientist are expressed
- Others are inferred by the framework’s “expertise”

19/31



III. Policies
Policy experts



Back in the kitchen…

- Policies are constraints on what should happen
- Directly, they prohibit some things happening in the workflow

- Can be from various sources
- Laws (GDPR), organisational policies, contracts, etc

- Can be on different levels
- Directly prohibit actions, impose conditions, …

Kitchen rulez

1. Your workspace must 
be hygienic

2. You must wash your 
hands before touching 
food

3. Listen to your boss
4. Thou shalt not put 

pineapple on pizza

21/31



The problem with policies

- Policies, however, tend to be very vague
- Especially laws, to allow a judge to interpret

- Various sources of vagueness
- Abstract terms (e.g., “What does ‘hygienic’ mean?”)
- Incomplete definition (e.g., “How often do I need to wash

my hands?”)
- Needing context information (e.g., “Who is my boss?”)

Kitchen rulez

1. Your workspace must 
be hygienic

2. You must wash your 
hands before touching 
food

3. Listen to your boss
4. Thou shalt not put 

pineapple on pizza

22/31



Constraining recipes

- Luckily, we can scope kitchen policies to recipes (workflows)
- These are already very concrete and formal (executable/computable)

- Thus we can express policies as rules over recipes
- Plus extra context

- Doing so forces us to get concrete!

Kitchen rulez

1. Your workspace must 
be hygienic

2. You must wash your 
hands before touching 
food

3. Listen to your boss
4. Thou shalt not put 

pineapple on pizza

23/31



Constraining workflows

- The same therefore applies to EPI Framework workflows!
- Can be defined by hospitals individually

- I.e., hospitals are in charge of their own behaviour
- Written by policy experts

GDPR (approximately)

1. You can only use data 
for the purpose 
patients have given 
consent for.

2. Patients must be able 
to revoke their consent

3. …

24/31



Expected workflow policy types

- Policies fundamentally control data
- Tasks access data as part of a workflow
- As such, policies will allow/deny tasks to process their data
- Examples:

- Laws (GDPR)
“Tasks using my data are only allowed if no patients sourcing that data has retracted consent”

- Organisational policies
“The result of tasks processing this dataset may only be seen by people with this role”

- Agreements/Contracts
“This dataset is allowed to be transferred to St. Bob if used for this task and this workflow”

25/31



Policies as reasoners

- The complexity of policies shows policies 
need reasoning

- Specifically: policies need to be logical rules
- Logic programming languages already exist

- Datalog1

- eFLINT2

- SEASO3

- …
- However, can be any language

- All that matters is that an allow/deny is produced

1 https://www2.cs.sfu.ca/CourseCentral/721/jim/DatalogPaper.pdf
2 https://gitlab.com/eflint
3 https://github.com/sirkibsirkib/seaso

26/31

https://www2.cs.sfu.ca/CourseCentral/721/jim/DatalogPaper.pdf
https://gitlab.com/eflint
https://github.com/sirkibsirkib/seaso


Policies as brain

- Policies determine a hospital’s actions
- Completely in hospital control

(i.e., hospitals have autonomy)
- This also affords dynamic updates

- Based on situations, new laws, …

27/31



Takeaways

- Policies are formalisations of various kinds of rules
- Formalising laws, organisations policies, agreements, …
- They are concretised versions of the original rule

- Policies constrain which tasks are allowed
- And therefore workflows

- Expressed as logic rules (or whatever is needed)

28/31



IV. Conclusion



Takeaways

- The EPI Framework is a data-sharing platform
- Designed for research context

- Built to understand the work at hand (workflow) 
and test it to policy

- Ensures compliance of the scientist’s actions
- Separation of concerns to harness complexity

30/31



What next?

- If you’re curious, check the wiki!
- https://wiki.enablingpersonalizedinterventions.nl

- System requirements
- Local: Windows, macOS or Linux machine with Docker1

- Complete: Local machine + Linux server running Docker1

Come see the demo in the second hour! :)

31/31

1 https://docker.com

https://wiki.enablingpersonalizedinterventions.nl
https://docker.com


Tim Müller (t.muller@uva.nl)

https://enablingpersonalizedinterventions.nl

https://github.com/epi-project/brane

https://wiki.enablingpersonalizedinterventions.nl

The icons (not logos) in this presentation are from: Freepik, Ultimatearm, Vector Valley



V. Bonus slides



The dream of policies

- “hospitals have autonomy” (slide 27) is problematic!
- It’s crucial that hospitals are autonomous…
- …but therefore, we can’t force them to (not) do things!

- They can always leak the data we share somehow
- As such, writing a policy does not (necessarily!) enforce it

- Specifically: a hospital is guaranteed control until shared
- Policies thus need to consider trust in receiving parties

34/31


