
EPI Framework Demo
Tim Müller (CCI Group, UvA)

t.muller@uva.nl
UMC Utrecht - 23 October 2023

mailto:t.muller@uva.nl


Schedule

- 14:30 - 15:05: Hello, world! in Brane (guided hands-on)
- 15:05 - 15:25: EPIF in the PoC (presentation)
- 15:25 - 15:30: Questions, thoughts, evaluation, …

2/45



Hello, world! in Brane (guided hands-on)

- Write your first Hello, world!-package!
- See the steps at https://wiki.enablingpersonalizedinterventions.nl/user-guide

- Bottom-left, scroll down to “35. Tutorials”, then “35.2.1. Hands-on session: Hello, world!”
- Or see: https://tinyurl.com/umc-utrecht-demo

- I’ll go through it on the board!

3/45

https://wiki.enablingpersonalizedinterventions.nl/user-guide
https://tinyurl.com/umc-utrecht-demo


EPIF in the PoC
Or: The EPIF admin-side



I. Proof-of-Concept (PoC)



Where we left off…

- The EPI Framework is a:
“Federated workflow execution engine”

- We’ve discussed using the framework
- Data scientist
- Software engineer
- Policy expert

- Now: PoC-specifics as a system admin

6/45



PoC - The EPIF-perspective

- One central node
- Hosted by SURF

- Three worker nodes
- SURF (aggregation)
- St. Antonius, UMC Utrecht (local compute)

- Two datasets
- umc_utrecht_ect
- st_antonius_ect

- Two use-cases
- Rosanne’s use-case (stratified confidence)
- Saba’s use-case (synthetic data)

7/45



PoC - Rosanne’s use-case

- Stratified Confidence Sequence (SCS) analysis
- Federated analysis

- Compute SCS locally (UMC Utrecht, St. Antonius)
- Send to Trusted Third-Party (TTP) (SURF)
- Aggregate into global result

- Result: single value (number)

8/45



PoC - Saba’s use-case

- Training a synthetic generation algorithm
- First train as federated algorithm
- Then generate new set from central algorithm

- Training simple validation neural network
- Once as federated algorithm on raw data
- Twice as centralised algorithm on half data
- Once on synthetic data (also centralised)

- Result: various trained NN models (weights)
- Different hyperparameters (number of iterations, 

hidden layers)
- Compare using a test set (20% of data)

9/45



PoC in action - Rosanne’s use-case

10/45



PoC in action - Rosanne’s use-case

11/45



PoC in action - Rosanne’s use-case

12/45



PoC in action - Rosanne’s use-case

13/45



PoC in action - Rosanne’s use-case

14/45



PoC in action - Rosanne’s use-case

15/45



PoC in action - Rosanne’s use-case

16/45



PoC in action - Rosanne’s use-case

17/45



PoC in action - Rosanne’s use-case

18/45



PoC in action - Rosanne’s use-case

19/45



PoC in action - Rosanne’s use-case

20/45



PoC in action - Rosanne’s use-case

21/45



PoC in action - Rosanne’s use-case

22/45



PoC in action - Rosanne’s use-case

23/45



PoC in action - Rosanne’s use-case

24/45



PoC in action - Rosanne’s use-case

25/45



PoC in action - Rosanne’s use-case

26/45



PoC in action - Rosanne’s use-case

27/45



PoC in action - Rosanne’s use-case

28/45



PoC in action - Rosanne’s use-case

29/45



II. PoC Setup



Getting more accurate

- Let’s get detailed!
- Multiple VMs per domain
- Proxy nodes

- Channel communication
- “Gateways” for nodes

- Third VMs unused
- No time to add Jamila’s framework

31/45



Getting more secure

- Attempted to create realistic network
- VPN St. Antonius / SURF

- strongSwan VPN1 (IPsec)
- UMC Utrecht firewall restrictions

- Only proxy nodes are allowed to talk

1 https://www.strongswan.org/

32/45

https://www.strongswan.org/


Getting more secure

- To adhere to security, we need to 
define specific network routes

- Specific hops
- Specific interfaces

33/45



III. Configuring Brane nodes



node.yml

- Defines node context
- Defines node kind (central, worker, proxy, …)
- Defines other config locations
- Defines ports
- Defines container names
- …

- Comparable to
~/kube/config.yaml

35/45



node.yml - specific interfaces

- We use hostnames to customize addressing
- Node-local contents of /etc/hosts

- Different nodes talk to different interfaces
- …while sending the same hostname around

- Hacky, but it works!

36/45



proxy.yml

- Routes network traffic
- Authenticates clients

- Only clients presenting signed client certificate
- Routes through BFCs

37/45



proxy.yml - specific hops

- Route incoming traffic through 
single IP

- Essentially NATs using the 
incoming-table

- Outgoing traffic already routed 
through proxy by default

38/45



policies.yml

- Defines policies!
- Implemented as simple rule-based rules

- One set defines which container to execute
- One set defines who can access which dataset

- Identification based on client-side certificates

39/45



Certificates

- Authenticates clients
- So that policy may authorize them

- Used to encrypt traffic (without BFCs, that is)
- Required:

- Root certificate (per node)
- Server certificate (per node)
- Client certificate (per node, per client)

40/45



Takeaways

- Brane allows configuring specific 
network routes

- Specific hops
- Specific interfaces

- Policies defined through rule-based 
YAML file

- Certificates used for 
authentication/encryption

41/45



IV. Conclusion



EPIF in the PoC

- Setup between SURF, UMC Utrecht and St. 
Antonius

- Two use-cases
- Rosanne’s stratified confidence sequence analysis
- Saba’s synthetic data generation

- Realistic network security (hopefully)
- Brane supports required routing requirements

- …also because of the Proof-of-Concept

43/45



What if… BFC Framework

- BFC Framework can add in security 
as Virtualized Network Functions

- Spawn as Docker container
- Route traffic through container

- Can interact with policy
- e.g., “Only share with St. Bob Hospital if 

they are trusted and setup a VPN with us”

- Only useful for inter-domain 
networking

44/45



Tim Müller (t.muller@uva.nl)

https://enablingpersonalizedinterventions.nl

https://github.com/epi-project/brane

https://wiki.enablingpersonalizedinterventions.nl

The icons (not logos) in this presentation are from: Freepik, juicy_fish, Ultimatearm, Vector Valley


